
R059 Conflict & Litigation between software clients & Developers.doc

CONFLICT AND LITIGATION
BETWEEN SOFTWARE CLIENTS AND DEVELOPERS

Version 8 – September 1, 2000

Abstract

Software development and maintenance outsource contracts may lead to conflicts between the
client and the service organization. For a significant number of disputes, the conflict may reach
the point of litigation for breach of contract. The author and his colleagues are often
commissioned to perform independent assessments of contract software projects. We are also
engaged as expert witnesses in litigation associated with breach of software contracts. The
problems are remarkably similar from case to case. The clients charge that the development
group has failed to meet the terms of the contract and failed to deliver the software on time, fully
operational, or with acceptable quality. The vendors charge that the clients have changed the
terms of the agreement and expanded the original work requirements. The root cause of these
disputes can be traced to misunderstandings and ambiguous terms in the original contract.
Independent assessments coupled with improved forms of software development contract
based on function point metrics shows promise for minimizing the chances of conflict and
litigation.

Capers Jones, Chief Scientist
Artemis Management Systems

Software Productivity Research, Inc.
(an Artemis company)
6 Lincoln Knoll Drive
Burlington, MA 01803

Phone 781 273-0140
FAX 781 273-5176
Email capers@spr.com
Web http://www.spr.com

Copyright  1996 - 2000 by Capers Jones.
All Rights Reserved.

2

INTRODUCTION

Software development and maintenance have been troublesome technologies for more than 50
years. When actual results are compared to the desired and originally anticipated results, a
majority of large software projects tend to run late, to exceed their budgets, or even to be
canceled without being completed at all. The one-year delay in the opening of the new Denver
International Airport because the software controlling the luggage handling system was not fully
debugged illustrates the very real hazards of large software projects.

As the 21st century unfolds, an increasingly large number of organizations are moving toward
outsourcing or the use of contractors for development or maintenance (or both) of their
software applications. Although the general performance of outsourcing vendors and contract
software development organizations is better than the performance of the clients they serve, it is
not perfect.

When software is developed internally within a company and it runs late or exceeds its budget,
there are often significant disputes between the development organization and the clients who
commissioned the project and are funding it. Although these internal disputes are unpleasant
and divisive, they generally do not end up in court under litigation.

When software is developed by a contractor and runs late or exceeds the budget, or when it is
delivered in less than perfect condition, the disputes have a very high probability of moving to
litigation for breach of contract. From time to time, lawsuits may go beyond breach of contract
and reach the point where clients charge fraud.

As international outsourcing becomes more common, some of these disputes involve
organizations in different countries. When international laws are involved, the resolution of the
disputes can be very expensive and protracted.

The author and his colleagues at Software Productivity Research (SPR) are often commissioned
to perform independent assessments of software projects where there is an anticipation of some
kind of delay, overrun, or quality problem. We are sometimes engaged to serve as expert
witnesses in lawsuits involving breach of contract between clients and software contractors. We
have also been engaged to work as experts in software tax cases.

From participating in a number of such assessments and lawsuits, it is obvious that most cases
are remarkably similar. The clients charge that the contractor breached the agreement by
delivering the software late, by not delivering it at all, or by delivering the software in inoperable
condition or with excessive errors.

The contractors, in turn, charge that the clients unilaterally changed the terms of the agreement
by expanding the scope of the project far beyond the intent of the original agreement. The

3

contractors also charge some kind of non-performance by the clients, such as failure to define
requirements or failure to review delivered material in a timely manner.

The fundamental root causes of the disagreements between clients and contractors can be
traced to two problems:

• Ambiguity and misunderstandings in the contract itself.

• The historical failure of the software industry to quantify the dimensions of software projects
before beginning them.

Although litigation potentials vary from client to client and contractor to contractor, the overall
results of outsourcing within the United States approximates the following distribution of results
after about 24 months of operations, as derived from observations among our clients:

Table 1: Approximate Distribution of U.S. Outsource Results After 24 Months

Results Percent of Outsource
 Arrangements

Both parties generally satisfied 70%
Some dissatisfaction by client or vendor 15%
Dissolution of agreement planned 10%
Litigation between client and contractor probable 4%
Litigation between client and contractor in progress 1%

From process assessments performed within several large outsource companies, and analysis of
projects produced by outsource vendors, our data indicates better than average quality control
approaches when compared to the companies and industries who engaged the outsource
vendors.

However, our data is still based on samples of only about 1000 outsource projects as of 2000.
Our main commissioned research in the outsource community has been with clients of the largest
outsource vendors in the United States such as AMS, Andersen, CSC, EDS, IBM’s ISSC
subsidiary, Keane, Lockheed, and others in this class. There are a host of smaller outsource
vendors and contractors where we have encountered only a few projects, or sometimes none at
all since our clients have not utilized their services.

Software estimating, contracting, and assessment methodologies have advanced enough so that
the root causes of software outsource contracts can now be overcome. Software estimation is
now sophisticated enough so that a formal estimate using one or more of the 50 commercial
software estimation tools in conjunction with software project management tools can minimize
or eliminate unpleasant surprises later due to schedule slippages or cost overruns. Indeed, old-

4

fashioned purely manual cost and schedule estimates for major software contracts should
probably be considered an example of professional malpractice. Manual estimates are certainly
inadequate for software contracts or outsource agreements whose value is larger than about
$250,000.

A new form of software contract based on the use of function point metrics is clarifying the initial
agreement and putting the agreement in quantitative, unambiguous terms. This new form of
contract can also deal with the impact of creeping user requirements in a way that is agreeable
to both parties.

For major software contracts involving large systems in excess of 10,000 function points
independent assessments of progress at key points may also be useful.

ORIGINS OF CONFLICT IN SOFTWARE DEVELOPMENT CONTRACTS

Software development has been a difficult technology for many years. Compared to almost any
other manufactured object, software development requires more manual labor by skilled
craftsmen.

Further, many software applications are designed to automate manual activities that were not
often fully understood by clients in sufficient detail. Therefore as software development
proceeds, new requirements and new features tend to occur in a continuous stream.

Software contracting practices have often been highly ambiguous in determining the sizes of
various deliverables, development schedules, and other quantitative matters. More often than
not, the contract would deal only in generalities or discuss only part of the situation such as the
number of staff to be applied. Unfortunately, most software development contracts contain
insufficient language and clauses for dealing with changes in the requirements during
development.

The most common root cause of contract litigation where we have been expert witnesses are
new or changed requirements added by clients after the basic contract has been signed and
agreed to. The clients think these new requirements should be included in the original agreement
while the contractor thinks they should be funded separately. Unfortunately, the contract itself is
usually ambiguous as to how new requirements should be handled, and hence the contract itself
adds to the probability of conflict and litigation.

Finally, although effective software quality control is now technically possible, quality is seldom
part of software contracts and tends to be ignored until the software is delivered whereupon the
clients may be dismayed and disturbed. It would be much more effective to include quality
clauses in the contract itself.

5

Software management consultants have something in common with physicians: both are much
more likely to be called in when there are serious problems rather than when everything is fine.
Examining large software systems that are in trouble is a very common assignment for
management consultants.

Unfortunately, the systems are usually already somewhat late, over budget, and showing other
signs of acute distress before the consulting study begins. The consulting engagements,
therefore, are aimed at trying to correct the problems and salvage the system, if indeed salvage
is possible.

Table 2 shows the approximate frequency of various kinds of outcomes, based on the overall
size of the project being attempted. Table 2 is taken from the author’s book, Patterns of
Software Systems Failure and Success (International Thomson Press, 1995).

Table 2: Software Project Outcomes By Size of Project

PROBABILITY OF SELECTED OUTCOMES

Early On-Time Delayed Canceled Sum
1 FP 14.68% 83.16% 1.92% 0.25% 100.00%

10 FP 11.08% 81.25% 5.67% 2.00% 100.00%
100 FP 6.06% 74.77% 11.83% 7.33% 100.00%

1000 FP 1.24% 60.76% 17.67% 20.33% 100.00%
10000 FP 0.14% 28.03% 23.83% 48.00% 100.00%

100000 FP 0.00% 13.67% 21.33% 65.00% 100.00%

Average 5.53% 56.94% 13.71% 23.82% 100.00%

As can easily be seen from table 2 small software projects are successful in the majority of
instances, but the risks and hazards of cancellation or major delays rise quite rapidly as the
overall application size goes up. Indeed, the development of large applications in excess of
10,000 function points is one of the most hazardous and risky business undertakings of the
modern world.

Given the very common and serious problems with large software projects, it is not a surprise
that most of the litigation that SPR and the author have been involved with were for projects in
the 10,000 function point size range. The smallest project where we have worked as experts in
a breach of contract case was roughly 4000 function points in size.

The specific factors that most often trigger litigation are major schedule slips and major cost
overruns, with claims of poor quality also being common. Although the word “major” has no
precise definition, the usual project cited in lawsuits is more than 12 calendar months late and
more than 50% more expensive than planned at the time the project is terminated or the
litigation is filed.

6

Of all the troublesome factors associated with software, schedule slips stand out as being the
most frequent source of litigation between outsource vendors and their clients. Table 3 shows
approximate U.S. software development schedules in calendar months for six size ranges and
for six kinds of software project: end-user development; management information systems,
outsource projects, commercial software, system software, and military software. Table 3 is
taken from the author’s book Applied Software Measurement (McGraw Hill 1996).

The schedules shown here run from the nominal “start of requirements” up to the nominal “first
customer ship” date of software projects. The starting point of software projects is usually
ambiguous and difficult to determine. The starting points used in table 3 were simply derived by
querying the responsible project managers. Delivery dates are sometimes ambiguous too. The
assumption in table 3 is for delivery to the first paying customer, rather than delivery to Beta
Test or Field Test customers.

TABLE 3: AVERAGE SOFTWARE SCHEDULES IN MONTHS

END-USER MIS OUTSRC. COMMER. SYSTEM MILITARY AVERAGE

1FP 0.05 0.10 0.10 0.20 0.20 0.30 0.16

10FP 0.50 0.75 0.90 1.00 1.25 2.00 1.07

100FP 3.50 9.00 9.50 11.00 12.00 15.00 10.00

1000FP 0.00 24.00 22.00 24.00 28.00 40.00 27.60

10000FP 0.00 48.00 44.00 46.00 47.00 64.00 49.80

100000FP 0.00 72.00 68.00 66.00 78.00 85.00 73.80

Software schedules, like staffing patterns, are highly variable. In part, schedules are determined
by the number of personnel assigned, in part by the amount of overtime (both paid and unpaid),
in part by the volume of creeping user requirements, and in part by the tools, technologies, and
languages utilized.

The most troublesome aspect of software schedules is the major difference between the actual
schedules of software projects, and the anticipated or desired schedules as determined by
clients or senior executives.

Figure 1 illustrates the typical pattern of differences between the initial schedule established for
the project during requirements, and the final delivery of the software. Note how the gap
between anticipation and reality grows steadily wider as the overall sizes of the applications
increase in size and complexity. Thus Figure 1 illustrates the most common source of litigation
between outsource vendors and clients: the gap between anticipation and reality.

Figure 1 represents what is probably the most severe and chronic complaint about software
from corporate executives and high government and military officials: large systems are often
later than requested. They are often later than when the software managers promised too,

7

which is one of the reasons why the software management community is not highly regarded by
senior executives as a rule.

Planned Versus Actual Software Schedules

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

1FP 10FP 100FP 1000FP 10000FP 100000FP

Size in Function Points

S
ch

ed
ul

e
in

 C
al

en
da

r
M

on
th

s

Planned
Actual

Figure 1: Differences Between Planned and Actual Software Schedules

The large gap between the actual delivery date and the anticipated delivery date is the cause of
more friction between the software world, corporate executives, and clients than any other
known phenomenon. This gap is also the cause of a great deal of expensive litigation.

One of the factors that explains this gap is creeping user requirements. However, a problem of
equal severity is inadequate techniques in the way the original schedule estimates were
developed. Often schedules are set by arbitrary client demand, or external criteria, rather than
being carefully planned based on team capabilities. Arbitrary schedules that are preset by
clients or executives and forced on the software team are called “backwards loading to infinite
capacity” in project management parlance.

The contractors and outsource companies are often in competitive bids with other vendors.
Each competitor knows that if they reject the client’s arbitrary schedule demands, one of the
other competitors’ might get the contract. Thus competitive bidding often triggers the hazardous
practice of contractors accepting arbitrary schedule or cost criteria that are unachievable.

There is no easy solution to the practice that competitive bidding leads vendors into situations
that are outside the range of the current software state of the art. What might improve the

8

situation would be the availability of empirical data that showed software schedules, effort,
costs, and cancellation rates for various sizes and kinds of software. If this data were created
by a non-profit or independent organization, then both vendors and clients could have some
way of ascertaining whether a desired application can or cannot be accomplished in the time
desired. However, as of 2000 this kind of objective empirical data does not exist within the
software industry other than tables and graphs published in various software books, some of
which may be inconsistent from author to author.

There are a number of software benchmark data bases, but these are usually proprietary and
not generally available. While some of this data is generally available in books such as the
author’s Applied Software Measurement (McGraw Hill 1996) and Software Assessments,
Benchmarks, and Best Practices (Addison Wesley 2000) it is not a common practice for either
vendors or clients to utilize published data during the bidding process. Indeed, the most
common use of such published data is during litigation when the software project has been
cancelled or delayed.

Although changing requirements are troublesome, they are so common that every major
software contract needs to include methods for dealing with them. A fundamental root cause of
changing requirements is because software applications are expanding the horizon of the ways
companies operate. In a sense, the creation of software requirements is reminiscent of hiking in
a fog that is gradually lifting. At first only the immediate surroundings within a few feet of the
path are visible, but as the fog lifts more and more of the terrain can be seen.

The function point metric has proven to be a useful but not perfect tool for exploring the impact
and costs of creeping requirements. Recall that the function point metric is a synthetic metric
derived from five external attributes of software systems:

1 Inputs
2 Outputs
3 Inquiries
4 Logical files
5 Interfaces.

The normal reason that requirements grow or creep is that one or more of the five attributes also
associated with function points are growing. The single most common growth factor comprises
the needs for additional outputs, but any of the five function point elements can and do expand
as software projects proceed through development.

In the context of exploring creeping requirements, the initial use of function point metrics is
simply to size the application at the point where the requirements are first considered to be firm.
At the end of the development cycle, the final function point total for the application will also be
counted.

9

For example, suppose the initial function point count is for a project of 1000 function points,
and at delivery the count has grown to 1250. This provides a direct measurement of the volume
of “creep” in the requirements.

From analysis of the evolution of requirements during the development cycle of software
applications, it is possible to show the approximate rates of monthly change. The changes in
table 4 are shown from the point at which the requirements are initially defined through the
design and development phases of the software projects.

Table 4 is derived from the use of function point metrics, and the data is based on differences in
function point totals between: A) The initial estimated function point total at the completion of
software requirements; B) The final measured function point total at the deployment of the
software to customers.

If the first quantification of function points at requirements is 1000 function points and the final
delivered number of function points is 1120, that represents a 12% net growth in creeping
requirements. If the time span from completing the requirements through the design and code
phases is a 12 month period, then it can be seen that the rate of growth in creeping requirements
averages 1% per month.

In table 4, the changes are expressed as a percentage change to the function point total of the
original requirements specification. Note that there is a high margin of error, but even so it is
useful to be able to measure the rate of change at all:

Table 4: Monthly Growth Rate of Software “Creeping Requirements”

Software Type Monthly Rate of
Requirements
Change

Corporate contract or outsourced software 1.0%
Information systems software 1.5%
Systems software 2.0%
Military software 2.0%
Civilian government software 2.5%
Commercial software 3.5%

It is interesting that although rate of change for contract software is actually less than many other
kinds of applications, the changes are much more likely to lead to disputes or litigation. The
data in these tables is derived from the author’s book Patterns of Software Systems Failure and
Success (International Thomson Press, 1995).

10

Two forms of changing requirements occur, and both are troublesome for software contracts.
The most obvious form of change are new features. Here the function point metric can show
the exact rate of growth.

But a second form of change is more subtle and difficult to evaluate. Suppose the client is
dissatisfied with the appearance of various screens and reports produced by an early version of
a contracted software application. The client might ask for changes in the layouts and
appearance of the screens and reports, but this demand does not change the function point total
of the application since nothing new is being added.

There is no perfect way of dealing with requirements “churn” as opposed to requirements
“creep” or adding new features. However if the function point totals of the original screens and
reports are known, approximations of the changes are possible. Suppose that a particular
screen originally required 10 function points and half of the fields are being updated due to a
change in user requirements. It is reasonable to assess this change as being equivalent to about
5 function points.

Another way of dealing with requirements churn involves “backfiring” or direct conversion from
source code statements into equivalent function points. Suppose the application is written in the
COBOL programming language. The average number of COBOL statements in the procedure
and data divisions to implement 1 function point is about 106.7 logical source code statements.

Thus if the original screen required 1000 COBOL source code statements and the change
involved modification to 500 of them, then the requirements churn would be roughly equivalent
to 5 function points.

Because the measurement of requirements “churn” is more difficult than requirements “creep” or
new features, it is difficult to ascertain the exact volumes of such changes. However in several
recent breach of contract lawsuits, the approximate volume of “churn” was about twice that of
“creep” or adding new features. The combined total of creep and churn together can exceed
2% per calendar month during the phases of design and coding. The total volume of creep and
churn can top 30% of the original requirements in the 18 month period following the nominal
“completion” of the initial requirements. This rate does not occur often, but the fact that it can
occur at all implies a need for careful requirements analysis and effective change management
tools and methods.

MINIMIZING THE RISK OF SOFTWARE CONFLICT AND LITIGATION

In order to minimize or eliminate the risk that major software contracts will end up in dispute or
in court, it is obvious that the root causes must be attacked:

11

1) The sizes of software contract deliverables must be determined during negotiations,
preferably using function points.

2) Cost and schedule estimation must be formal and complete.

3) Creeping user requirements must be dealt with in the contract in a way that is satisfactory
to both parties.

4) Some form of independent assessment of terms and progress should be included.

5) Anticipated quality levels should be included in the contract.

6) Effective software quality control steps must be utilized by the vendor.

7) If the contract requires that productivity and quality improvements be based on an initial
baseline, then great care must be utilized in creating a baseline that is accurate and fair to
both parties.

Fortunately, all seven of the root causes of software conflict and contract litigation are now
amenable to control.

Sizing Software Deliverables

You would not sign a contract to build a house without knowing how many square feet it will
contain. Neither clients nor contractors should enter into development agreements without
formal sizing of the work to be performed. Indeed, the best method of minimizing downstream
risks is to determine the function point total of the application during the initial contract
negotiations.

A strong caution should be given: Entering into a fixed-price contract for work of indeterminate
size is a very hazardous undertaking. Imagine the consequences of entering into a fixed-price
contract to build a home without any solid architectural specifications or even a firm idea of how
many square feet the house is to contain! Of course, home construction is not usually a fixed-
price undertaking, for obvious reasons.

If the negotiations are to be completed before software requirements are firm, it is still possible
to include contractual clauses to the effect that, “Software sizes based on function point metrics
will be determined by utilization of neutral certified function point counting specialists within six
months” or something similar.

The function point metric is now the preferred metric throughout the world for sizing complete
software projects, and all other kinds of software deliverable items: paper documents such as

12

specifications and user manuals, source code for any known programming language, user
manuals, and test cases.

The earliest point at which function point totals can be derived with certainty is at the completion
of the requirements phase. If the contract is to include development of the requirements
themselves, then the final total will not be known at the time the contract discussions are
initiated. However, the use of “cost per function point” as part of the contract will clarify the
overall situation.

Even before requirements are fully defined, there are several useful approximation methods
based on function points that can be helpful. One approximation method is based on pattern
matching concepts, which is a feature of a number of software cost estimating tools such as the
author’s CHECKPOINT and KnowledgePlan software cost estimating tools.

For software applications of significant size ranges, such as those > 1000 function points, the
outputs are usually the first item known or defined during the requirements phase, and the other
function point elements are gradually defined over a period of a few months. The following list
in table 5 shows the usual sequence:

Table 5: Function Point Definition Sequence For Software Projects
 Larger than 1000 Function Points

Function Sequence of Time Period From
Point Element Discovery Start of Requirements

Outputs Usually known first (within the first month)
Inputs Usually known second (within two months)
Interfaces Usually known third (within three months)
Logical files Usually known fourth (within four months)
Inquiries Usually known last (within five months)

If any one of the five function point elements is known or guessed at, the missing elements will
be approximated by scanning the knowledge base and extracting projects whose patterns are
similar. Of course, this is not particularly accurate, but it does allow for very early sizing long
before the true count of function points can be developed.

The overall accuracy of pattern matching logic varies based on how many of the five function
point parameters are known with certainty:

Number of Function Range of Uncertainty
Point Parameters Known

1 + or - 40 %

13

2 + or - 20 %
3 + or - 15 %
4 + or - 10 %
5 + or - 5 %

The accuracy improves as more and more of the function point factors are determined. The
advantage of this form of approximation is that it begins to provide a quantitative base for
contractual discussions with clients that is not just wild guess work.

A second and more recent method for exploring the possible sizes of software applications is
that of “browsing” through a collection of size data derived from measured historical projects.
For example, the new Software Productivity Research KnowledgePLAN software cost
estimating tool includes a browsing feature for examining software sizes. Table 6 illustrates a
small sample of the kinds of size data that can now be examined as a precursor for determining
the sizes of new applications:

Table 6: Approximate Sizes of Selected Software Applications
(Sizes Based on IFPUG 4 and SPR Logical Statement Rules)

Application Type Purpose Primary Size in Size in LOC
Language KLOC Function per FP

Points

Airline Reservat. MIS Business Mixed 2,750 25,000 110.00
Insurance Claims MIS Business COBOL 1,605 15,000 107.00
Telephone Billing MIS Business C 1,375 11,000 125.00
Tax Prep. (Pers.) MIS Business Mixed 180 2,000 90.00
General Ledger MIS Business COBOL 161 1,500 107.00
Order Entry MIS Business COBOL/SQL 106 1,250 85.00
Human Resource MIS Business COBOL 128 1,200 107.00
Sales Support MIS Business COBOL/SQL 83 975 85.00
Budget Prepar. MIS Business COBOL/SQL 64 750 85.00
Graphics Design Commercial CAD Objective C 54 2,700 20.00
IEF Commercial CASE C 2,500 20,000 125.00
Visual Basic Commercial Compiler C 375 3,000 125.00
IMS Commercial Data Base Assembly 750 3,500 214.29
CICS Commercial Data Base Assembly 420 2,000 210.00
WMCCS Military Defense JOVIAL 18,000 175,000 102.86
Aircraft Radar Military Defense Ada 83 213 3,000 71.00
Gun Control Military Defense CMS2 250 2,336 107.00
Lotus Notes Commercial Groupware Mixed 350 3,500 100.00
MS Office Prof. Commercial Office tools C 2,000 16,000 125.00
SmartSuite Commercial Office tools Mixed 2,000 16,000 125.00
MS Office Stand. Commercial Office tools C 1,250 10,000 125.00
Word 7.0 Commercial Office tools C 315 2,500 126.00
Excel 6.0 Commercial Office tools C 375 2,500 150.00
Windows 95 Systems Oper. Sys. C 11,000 85,000 129.41
MVS Systems Oper. Sys. Assembly 12,000 55,000 218.18

14

UNIX V5 Systems Oper. Sys. C 6,250 50,000 125.00
DOS 5 Systems Oper. Sys. C 1,000 4,000 250.00
MS Project Commercial Project Mgt. C 375 3,000 125.00
KnowledgePlan Commercial Project Mgt. C++ 134 2,500 56.67
CHECKPOINT Commercial Project Mgt. Mixed 225 2,100 107.14
Funct. Point Cnt. Commercial Project Mgt. C 56 450 125.00
SPQR/20 Commercial Project Mgt. Quick Basic 25 350 71.43
5ESS Systems Telecomm. C 1,500 12,000 125.00
System/12 Systems Telecomm. CHILL 800 7,700 103.90

SUM 68,669 542,811 126.51
AVERAGE 2,020 15,965 126.51

Table 6 is only a small sample. It is sorted by the third column, or the “purpose” of software,
since this is a common factor which needs to be understood. However, when using the
browsing capabilities of actual software cost estimating tools, more sophisticated search logic
can be used. For example, the search might narrow down the choices to “only MIS
applications written in COBOL” or whatever combination is relevant.

Formal Software Cost Estimation

As of 1999, there are more than 50 commercial software cost estimation tools marketed in the
United States, and at least 40 of them support function point metrics. The “best practice” for
software estimation is to utilize one or more of these software estimation tools and have
experienced managers, consultants, and technical personnel validate the estimate.

For development schedules, output from most commercial software cost estimating tools can
feed directly into project management tools although many commercial estimating tools also
include schedule logic and can produce approximate schedules themselves.

Informal manual cost estimates or schedule estimates should not be part of software contracts if
the total value of the contract is more than about $50,000. Indeed, for software contracts
whose value exceeds about $500,000 the use of manual estimating methods has a distressingly
high probability of ending up in court for breach of contract.

The information shown in table 7 illustrates the basic concept of activity-based costing for
software projects. It is not a substitute for one of the commercial software cost estimating tools
such as the author’s CHECKPOINT or KnowledgePlan software estimation tools that
support activity-based costs in a much more sophisticated way, such as allowing each activity to
have its own unique cost structure, and to vary the nominal hours expended based on
experience, methods, tools, etc.

Table 7: Example of Activity-Based Costs per Function Point

(Assumes $5000 per month and 100% Burden Rate)

15

Unburdene
d

Burdened

FP/PM Hours/FP Cost/FP Cost/FP

Activities Performed Mode Mode Mode Mode

01 Requirements 175.00 0.75 $28.57 $57.14

02 Prototyping 150.00 0.88 $33.33 $66.67

03 Architecture 300.00 0.44 $16.67 $33.33

04 Project plans 500.00 0.26 $10.00 $20.00

05 Initial design 175.00 0.75 $28.57 $57.14

06 Detail design 150.00 0.88 $33.33 $66.67

07 Design reviews 225.00 0.59 $22.39 $44.78

08 Coding 50.00 2.64 $100.00 $200.01

09 Reuse acquisition 600.00 0.22 $8.33 $16.67

10 Package purchase 400.00 0.33 $12.50 $25.00

11 Code inspections 150.00 0.88 $33.33 $66.67

12 Ind. Verif. & Valid. 125.00 1.06 $40.00 $80.00

13 Configuration mgt. 1,750.00 0.08 $2.86 $5.71

14 Formal integration 250.00 0.53 $20.00 $40.00

15 User documentation 70.00 1.89 $71.43 $142.86

16 Unit testing 150.00 0.88 $33.33 $66.67

17 Function testing 150.00 0.88 $33.33 $66.67

18 Integration testing 175.00 0.75 $28.57 $57.14

19 System testing 200.00 0.66 $25.00 $50.00

20 Field testing 225.00 0.59 $22.22 $44.45

21 Acceptance testing 350.00 0.38 $14.29 $28.57

22 Independent testing 200.00 0.66 $25.00 $50.00

23 Quality assurance 150.00 0.88 $33.33 $66.67

24 Installation/training 350.00 0.38 $14.29 $28.57

25 Project management 100.00 1.32 $50.00 $28.57

Cumulative Results 6.75 19.55 $740.71 $1,409.98

Arithmetic mean 284.8 0.78 $29.63 $56.40

To use the following table, you need to know at least the approximate function point size of the
application in question. Then select the set of activities that you believe will be performed for
the application. After that you can add up the work-hours per function point for each activity.
You can do the same thing with costs, of course, but you should replace the assumed costs of
$5,000 per staff month and a 100% burden rate with the appropriate values from your own
company or organization.

Once activity-based costing is started, it can be extended to include many other activities in a
similar fashion. For example, the set of activities shown here is common for development
projects. If you are concerned with maintenance of aging legacy applications, with porting
software from one platform to another, or with bringing out a new release of a commercial
software package than you will need to deal with other activities outside of those shown in the
table.

16

Controlling Creeping User Requirements

Since the requirements for more than 90% of all software projects change during development,
creeping user requirements is numerically the most common problem of the software industry
and should not be a surprise to anyone. Indeed for software projects at or above 10,000
function points creeping requirements have been noted on 100% of all such projects to date.

A number of technologies have been developed which can either reduce the rate at which
requirements change, or at least make the changes less disruptive. Space does not permit a full
discussion of each, but following are the technologies with positive value in terms of easing the
stress of creeping user requirements.

Joint Application Design (JAD)

Joint application design or JAD is a method for developing software requirements under which
user representatives and development representatives work together with a facilitator to
produce a joint requirement specification which both sides agree to.

The JAD approach originated in Toronto, Canada in the 1970’s at the IBM software laboratory
there. JAD sessions have now become very common for information systems development
throughout the world. Books, training, and consulting groups that offer JAD facilitation are also
very common. Compared to the older style of “adversarial” requirements development, JAD
can reduce creeping requirements by almost half. The JAD approach is an excellent choice for
large software contracts that are intended to automate information systems.

The use of JAD for information systems projects has the beneficial effect of generating such
complete requirements that subsequent down-stream changes are usually below 1% per month.

Prototypes

Since many changes don’t start to occur until clients or users begin to see the screens and
outputs of the application, it is obvious that building early prototypes can move some of these
changes to the front of the development cycle instead of leaving them at the end.

Prototypes are often effective in reducing creeping requirements, and can be combined with
other approaches such as joint application design. Prototypes by themselves can reduce
creeping requirements by somewhere between 10% and about 25%.

Change Control Boards

Change control boards are not exactly a technology, but rather a group of managers, client
representatives, and technical personnel who meet and decide which changes should be
accepted or rejected. Change control boards are often encountered in the military software

17

domain systems software domain, although they are not common for information systems. Such
boards are most often encountered for large systems in excess of 10,000 function points in size.

Configuration Control Tools

Software “configuration control” refers to keeping track of all modifications to documents,
source code, screens, and other deliverables. Normally an authentic original version is used to
kick-off the configuration control process. This version becomes the “baseline” against which
all changes are measured. Then each change is evaluated in terms of how it affects the baseline.

Changes are also evaluated in terms of how they affect all deliverables and also other changes.
Configuration control is a highly complex activity, but fortunately one that is supported by some
very sophisticated tools.

Configuration control is best on military projects, but is also frequently well done on large
systems software projects. The management information systems domain and civilian
governments tend to lag somewhat in this key activity.

Many commercial tools are available to facilitate software configuration control and change
management. Which specific tool is used is not a major issue in litigation, but failure to use any
change control tools at all tends to be a fairly common situation in projects undergoing litigation
for delays and overruns.

Using a Sliding Scale of Cost per Function Point

For software development contracts, an effective way of dealing with changing user
requirements is to include a sliding scale of costs in the contract itself. For example, suppose a
hypothetical contract is based on an initial agreement of $1000 per function point to develop an
application of 1000 function point in size, so that the total value of the agreement is $1,000,000.

The contract might contain the following kind of escalating cost scale for new requirements
added downstream:

Initial 1000 function points = $1000 per function point
Features added more than 3 months after contract signing = $1100 per function point
Features added more than 6 months after contract signing = $1250 per function point
Features added more than 9 months after contract signing = $1500 per function point
Features added more than 12 months after contract signing = $1750 per function point
Features deleted or delayed at user request = $250 per function point

Similar clauses can be utilized with maintenance and enhancement outsource agreements, on an
annual or specific basis such as:

18

Normal maintenance and defect repairs = $250 per function point per year
Mainframe to client-server conversion = $500 per function point per system
Special Year 2000 search and repair = $75 per function point per system

(Note that the actual cost per function point for software produced in the United States runs
from a low of less than $100 per function point for small end-user projects to a high of more
than $7,500 per function point for large military software projects. The data shown here is for
illustrative purposes, and should not actually be used in contracts as it stands.)

The advantage of the use of function point metrics for development and maintenance contracts is
that they are determined from the user requirements and cannot be unilaterally added or
subtracted by the contractor.

One of the many problems with the older “lines of code” or LOC metric is that there is no
objective way of determining the minimum volume of code needed to implement any given
feature. This meant that contracts based on cost per LOC could expand without any effective
way for the client to determine whether the expansions were technically necessary.

Function points, on the other hand, cannot be unilaterally determined by the vendor and must be
derived from explicit user requirements. Also, function points can easily be understood by
clients while the lines of code metric is difficult to understand in terms of why so much code is
needed for any given contract.

The function point metric has led to some rather useful rules of thumb that can be applied during
software requirements or as soon as the approximate total volume of function points can be
ascertained. These rules are only rough approximations, but they can head off potential litigation
if the client demands are too far from the average results.

• Software schedules in calendar months from requirements to delivery can be approximated
by raising the function point total of the application to the 0.4 power.

• Software defect potentials or numbers of “bugs” that might be encountered can be
approximated by raising the function point total of the application to the 1.25 power. This
will yield the total number of bugs or errors found in five deliverables: requirements, design,
source code, users manuals, and “bad fixes” or secondary defects.

• Software technical staffing for development projects can be approximated by dividing the
size of the application in function points by 150. This will yield the number of analysts,
programmers, technical writers, data base administrators, etc. When projects are under
tight schedule constraints, the assignment scopes can drop well below 100 function points
per team member.

19

• Software technical staffing for maintenance projects can be approximated by dividing the
size of the application in function points by 1500. This will yield the number of maintenance
personnel necessary to perform defect repairs and small enhancements below about 10
function points in size.

These rules of thumb can also be used by client personnel to perform initial comparisons of
vendor bids. If a bid is significantly better than these rules of thumb, such as asserting a delivery
schedule where the exponent would be less than the 0.3 power, then the vendor can be asked
to demonstrate how such a remarkable achievement would be possible.

These rules of thumb are not a substitute for formal software cost estimates produced using
modern, calibrated estimating and project management tools. However, if planned results are
wildly divergent from results derived from these rules, it is a sign that the contract is in urgent
need of better estimating methods.

20

Function Points and Tax Litigation

When companies are bought and sold, quite a bit of their value may be in the form of the
software applications that they owned at the moment of the transaction. Thus the revenue
services of many countries are interested in determining the value of software.

Often the software owned by companies was created some years ago, in the 1970’s or 1980’s
and some of the original data has long been lost. The personnel who created the applications
may have changed jobs or retired.

Thus determining the value of software for tax purposes is not an easy task. The most common
approach is to try and replicate the development effort that might have been used. Doing this
with a modern software cost estimating tool is not too difficult, but it is necessary to know a
number of basic facts about the application and the personnel situation at the time of
development, such as:

• The salary levels of the company during the time of development
• The overhead or burden rate used by the company
• The amount of unpaid overtime, if any, associated with the project
• The size of the application in function points
• The size of the application in source code statements
• The programming language(s) utilized
• The presence or absence of reusable materials
• The methods and processes used during development

Recreating typical patterns of software development is a frequent aspect of software tax cases.
The opposing experts usually vary in their assertions of the experience of the development team,
the volumes of reusable materials available, and the effectiveness of the tools and methods
utilized. Since there are broad ranges in all of these factors, it is important to try and get as
accurate a picture of what really occurred as possible.

In the United States, the usage of function point metrics for software tax cases is rapidly
increasing. The older lines of code metrics have serious flaws for comparing applications done
in different programming languages. They also have flaws for applications that were developed
in more than one programming language, which occurs in about 30% of U.S. software.

The most serious problem with the LOC metric for software tax cases is the fact that this metric
penalizes high-level languages and artificially inflates the productivity levels of low-level
languages. Thus comparing the economics of an older project done in a low-level language
such as assembly to a modern project done in a high-level language such as Smalltalk cannot be
done using LOC metrics.

21

Independent Assessments of Software Contracts and Projects

Many consultants such as the author and his colleagues at Software Productivity Research are
commissioned to perform independent assessments of software contracts to determine such
things as the probability of:

• On-time or delayed delivery dates
• Probable quality
• Probable costs

Although independent assessments are effective in finding problems, they are often not
commissioned until the project is already in some distress such as having missed a major
milestone.

For large systems where the total costs will amount many millions of dollars, it would be simple
prudence to engage independent assessment consultants at key stages for key activities rather
than waiting until the project is in trouble. The key roles for independent software management
consultants might be:

1. Reviewing the terms of the contract for technical issues known to cause disputes.
2. Determining or validating function point counts of the application at requirements.
3. Determining or validating cost and schedule estimates.
4. Determining or validating software quality methods.
5. Suggesting methods of recovery for contracts that have veered off course.
6. Ensuring the state-of-the art method have been utilized for the work at hand.

If independent assessments are planned for the project from the start, then both sides can
anticipate the situation and prepare for it. Unfortunately, when a project is already in trouble
independent software assessments are sometimes viewed as being analogous to the role of the
“independent prosecutors” that are named for special investigations such as Watergate or White
Water.

Of course, if both vendors and clients had empirical data available on software schedules, costs,
quality, and other issues that might be troublesome in contracts, that would be an effective
approach too.

Including Quality Requirements in Software Contracts

The second most common source of software contract dispute and litigation are assertions or
poor quality or even worse, assertions that the software was delivered in inoperable condition.

22

We have also observed a major lawsuit where the client, who was the plaintiff, assumed that a
major software application would be delivered with zero material defects after the completion of
system test. Although zero defect software is a laudable goal, it has never occurred on
applications larger than about 1000 function points in size. It does not occur very often for
smaller applications either.

It almost always happens that the contract itself had no clauses or language dealing with quality
and so the whole issue is based on what are implied industry norms for software quality levels.
Here too, the function point metric is able to quantify results in such a way that contracts can
include quality clauses.

Based on a studies published in two of the author's books Applied Software Measurement
(McGraw-Hill 1996) and Software Quality - Analysis and Guidelines for Success (International
Thomson Computer Press 1997) the average number of software errors is about five per
function point. This data has been comparatively stable for the United States as a whole
between the mid 1980’s and 1997.

Table 8: U.S. Averages in Terms of Defects per Function Point

Defect Origins Defects per
Function Point

Requirements 1.00
Design 1.25
Coding 1.75
Document 0.60
Bad Fixes 0.40

Total 5.00

Incidentally, the range around this average value is about 2 to 1 in both directions; i.e. values
from below 2.5 defects per function point to almost 10 defects per function point have been
noted.

These numbers represent the total numbers of defects that are found and measured from early
software requirements throughout the remainder of the life cycle of the software. The defects
are discovered via requirement reviews, design reviews, code inspections, all forms of testing,
and user-reported problem reports.

Several commercial software estimating tools such as Checkpoint and KnowledgePlan
include features for estimating software defects, severity levels, and defect removal efficiency.
Some outsource vendors also have internal proprietary tools with similar quality estimating
features. Whether a commercial or proprietary tool is utilized, it is a “best practice” to perform
a formal quality estimate as part of outsource agreements. The pragmatic reason for this is

23

because the effort and costs of removing defects often take more effort than anything else in
large software projects. Unless defect potentials and defect removal methods are anticipated, it
is difficult to estimate overall project schedules and costs.

For software contracts, there is a very powerful software quality metric that has had an
interesting history and a very interesting pattern of deployment throughout the industry. The
metric is called “defect removal efficiency” and it is an easy metric to calculate. During the
development cycle of a software project, the development team or the quality assurance group
keeps a record of all bugs or defects that are found. For example, assume that during
development of a program the developers find 90 bugs.

When the program is released to customers, continue to keep records of bugs or defects that
are found during the first year of usage. Continuing with the same example, assume that the
users found 10 bugs during the first year. After a suitable time interval (such as three months or
90 days of usage) aggregate the pre-release defect reports and the post-release defects found
by clients and calculate the efficiency with which bugs were eliminated.

Defects found during development 90
Defects found by users or clients 10

Total defect reports 100
Defect removal efficiency 90 %

As of 2000, the approximate U.S. norm for defect removal efficiency is about 85%. However,
best in class organizations can average more than 95% and achieve more than 99% for their
very best results on a few projects. Unfortunately, perfect defect removal efficiency or 100%
appears to be beyond the current state of the art. From analyzing about 9500 software
projects, zero defects in the first year of usage has only been observed in two small projects.
Both of these zero-defect projects were less than 300 function points in size, had stable
requirements with no changes, and had development teams who had built at least half a dozen
similar applications.

It would be appropriate to include a specific target for defect removal efficiency in software
contracts. The author suggests a value such as 96% removal efficiency to be determined three
months after the first full deployment of the application. There might be some form of penalty
clause in the outsource agreement if defect removal efficiency levels are below 90%. Of course
the post-release defect counts must be validated by an independent source to ensure that
outsource vendors are fairly treated.

Achieving High Quality and Excellence in Defect Removal Efficiency

In order to achieve high levels of defect removal efficiency, it is necessary to use state of the art
quality control approaches. For large software applications, formal design and code inspections

24

plus formal testing are the only known ways of exceeding 95% in cumulative defect removal
efficiency levels.

As it happens, achieving excellence in defect removal efficiency will optimize the probability that
the project will finish on time and within budget. Many software projects fail or can’t be
delivered because quality is low, so formal pre-test inspections can shorten schedules, lower
costs, and improve user satisfaction simultaneously.

Table 9 shows the approximate ranges of defect removal efficiency levels for selected kinds of
defect removal activities:

Table 9: Software Defect Removal Efficiency Ranges

Defect Removal Activity Ranges of Defect
Removal Efficiency

Informal design reviews 25% to 40%
Formal design inspections 45% to 65%
Informal code reviews 20% to 35%
Formal code inspections 45% to 70%

Unit test 15% to 50%
New function test 20% to 35%
Regression test 15% to 30%
Integration test 25% to 40%
Performance test 20% to 40%
System test 25% to 55%
Acceptance test (1 client) 25% to 35%
Low-volume Beta test (< 10 clients) 25% to 40%
High-volume Beta test (> 1000 clients) 60% to 85%

It is obvious that no single defect removal operation is adequate by itself. This explains why
“best in class” quality results can only be achieved from synergistic combinations of defect
prevention, reviews or inspections, and various kinds of test activities. Between eight and 10
defect removal stages are normally required to achieve removal efficiency levels > 95%.

Other interesting clauses can be inserted into software contracts and outsource agreements to
deal with the quality of the delivered materials and also with defect removal efficiency levels.

For example, a contract might deal with software quality in any or all of the following ways:

25

• By specifying permissible levels of defects during the first year of usage, such as no more
than 0.05 defects per function point of severity 1 and severity 2 categories in the first year of
production as measured by an independent QA organization.

• By demanding that the vendor achieve a specified defect removal efficiency level, such as
96.0%, and keep the records to prove it. (Such records would be counts of all
development bugs and counts of all user-reported bugs for a predetermined time period
such as delivery plus 90 days.)

• By demanding that the vendor utilize certain quality control methods such as formal
inspections, testing by trained specialists, an active quality assurance group, and a quality
measurement and defect tracking tools.

• By demanding that the vendor achieve certain levels of assumed quality control, such as
insisting on ISO 9001 certification or SEI CMM level 3 attainment. However, neither ISO
certification nor achieving a specific SEI CMM level guarantees high quality. Achieving SEI
CMM level 3 does raise the odds of high quality. However, ISO certification has not yet
demonstrated any significant software quality improvements, although there are assertions
that hardware quality benefits.

• By requiring, as do some military software contracts, that the quality levels be assessed by
independent consultants or subcontractors who are not under direct control of the prime
contractor. This is termed “independent verification and validation” (IV&V) and has been a
standard part of military software contracts for many years although rare in a civilian
context.

Whatever the final language in the contract, software quality estimation, measurement, and
control are now good enough so that outsource and software development contracts can easily
include quality language that will be acceptable to both sides and also have a good chance of
delivering high quality in real life.

Problems With Baselines and Productivity and Quality Improvement Agreements

It frequently happens that outsource contracts include language that requires the vendor to
demonstrate annual improvements in software quality, productivity, and schedules against an
initial baseline.

There are several hazards with achieving these contractual improvements. The major problem,
however, is the difficulty of creating a valid and accurate initial baseline. To be blunt, if the client
had been capable enough to create accurate quality and productivity baselines they might also
have been so good at building software that the outsource agreement might not have occurred.

26

Many outsource agreements are initiated because the software capabilities of the client are not
very sophisticated. This means, inevitably, that the client lacks accurate quality and productivity
data.

The most common problem with productivity baselines is that they omit between 35% and 75%
of the actual work performed on software projects. These incomplete baselines make the
client’s productivity seem much higher than it really is, and hence cause the outsource vendor to
have an artificially high starting point.

Table 10 was published in Applied Software Measurement (McGraw Hill 1996) and shows the
typical gaps and omissions in software cost and resource data:

Table 10: Common Gaps in Historical Software Cost and Resource Data

Activities Performed Completeness of historical data

01 Requirements Missing or Incomplete
02 Prototyping Missing or Incomplete
03 Architecture Incomplete
04 Project planning Incomplete
05 Initial analysis and design Incomplete
06 Detail design Incomplete
07 Design reviews Missing or Incomplete
08 Coding Complete
09 Reusable code acquisition Missing or Incomplete
10 Purchased package acquisition Missing or Incomplete
11 Code inspections Missing or Incomplete
12 Independent verification and validation Complete
13 Configuration management Missing or Incomplete
14 Integration Missing or Incomplete
15 User documentation Missing or Incomplete
16 Unit testing Incomplete
17 Function testing Incomplete
18 Integration testing Incomplete
19 System testing Incomplete
20 Field testing Incomplete
21 Acceptance testing Missing or Incomplete
22 Independent testing Complete
23 Quality assurance Missing or Incomplete
24 Installation and training Missing or Incomplete
25 Project management Missing or Incomplete
26 Total project resources, costs Incomplete

27

Only about five activities out of a possible 25 are routinely accurate enough so that the data is
usable for baseline purposes. The effect of the missing or incomplete data is to drive up
apparent productivity rates, and make projects seem cheaper and more productive than they
really were.

For example, if the client’s data is as incomplete as that illustrated by table 10 then their actual
productivity would be in the range of about 5.0 function points per staff month of less on a
typical 1000 function point development project. But due to the gaps and missing data, the
client might present the vendor with a baseline that indicates a productivity rate of 20.0 function
points per staff month on such projects. This inflated rate is because the client’s cost and
resource tracking system omits about 75% of the actual effort.

Often the client’s original baseline data only contains information on low-level design, coding,
and testing. But the terms of the contract require that the outsource vendor show an
improvement for the entire development cycle: i.e. requirements, analysis, design, coding,
testing, user documentation, and project management. Surprisingly, many client executives do
not even know what their baseline data contains. They assume their data is complete, when in
fact it only represents 35% or less of a full project life cycle.

One solution to the problem of exaggerated and incorrect baselines would be to include a data
validation clause in the contract. That is, an independent third party would be asked to
interview client personnel and assess the validity of baseline data. If, as normally occurs, the
baseline resource and cost data is wrong and incomplete, then the third party could construct a
more realistic baseline based on filling in the missing elements. This of course would add time
and expense to the contract. Also, since many client executives are not aware of the errors of
their baseline data, it would not be easy to convince client executives of the need to create a
baseline independently.

Quality baselines are even harder to gather than productivity baselines. In the United States,
less than 10% of software organizations have any substantial amounts of quality data. The
companies that have really good and accurate quality data are often so sophisticated that they
may not resort to outsource agreements.

Almost none of the client organizations that enter into outsource agreements have enough quality
data to create a valid baseline. Therefore it is fatuous to include quality improvement targets in
contracts if the starting baseline points are essentially unknown.

A possible solution to the quality baseline problem is not even to bother trying to collect the
client’s data before the outsource agreement starts. The contract might include a clause that the
vendor will commit to achieving more than 96% defect removal efficiency (or some other
agreed-to level). The efficiency level would be calculated after an agreed to period of usage,
such as 90 days after deployment. Thus if 94 bugs are found by the outsource vendor before

28

delivery, and the client finds 4 defects in the first 90 days, then the contractual obligation to
achieve 96 defect removal efficiency has been met.

If the outsource vendor only finds 80 defects and the client finds 20 defects in the first 90 days,
then the removal efficiency is only 80% and some kind of penalty or corrective action would be
triggered.

If such clauses are used, it would probably be necessary to include severity levels also. For
example a contract might call for zero severity 1 defects, and very low numbers of severity 2
defects (using IBM’s 4-level severity scale where severity 1 implies total failure and severity 2
implies serious problems). Severity 3 and 4 defects might be excluded from the agreement, or
permitted in reasonable quantities.

Here too, independent collection of the defect data by a third party may be necessary to ensure
that neither side is manipulating the data called for by the contract. However, organizations that
have a software quality assurance group that reports to a separate management chain would
probably trust this group to be accurate and independent enough so the data could be used
contractually.

The fundamental problem with outsource contracts that require improvements against a starting
baseline is the difficulty of ascertaining what the baseline truly is. Corporate software cost
tracking systems are notoriously incomplete and inaccurate so this data is a poor choice.

The most accurate solution would be to have the baseline constructed by an independent third
party. If the outsource agreement is to last more than 5 years or has a value of more than
$50,000,000 then it is worth the added cost and effort to establish a valid initial baseline. Even
with an independent baseline, however, if either the client or the outsource vendor feels that the
baseline constructed by the third party is flawed or inaccurate, there must also be some method
of appealing the results.

Yet another method of overcoming the lack of accurate baseline data for specific companies
would be to exclude the client’s local data altogether. The outsource vendor would be required
to demonstrate improvements against published industry average data points. Some of the
published sources that might be used for establishing industry norms would be the annual
benchmark data points published by organizations such as the Compass Group, the
International Function Point Users Group (IFPUG), Howard Rubin Associates, or Software
Productivity Research.

Incidentally, another aspect of the problem of making improvements against a starting baseline is
the rate at which improvements can be made. While clients would like to see annual
improvements of 30% or more, these seldom occur in real life. Software quality levels can
sometimes improve more than 30% per year for several years in a row. However, software
productivity levels seldom improve at an annualized rate of more than about 12%. The first year

29

after an outsource agreement is begun, there are usually no improvements at all because of the
start-up problems of transferring work from the client to the outsource vendor.

Therefore realistic contracts that call for improvements against starting baselines would not call
for any tangible improvements until the end of the second year. The peak period in terms of
rate of improvement would be during years 3 through 5 of the outsource agreement. If the
annualized rate of quality and productivity improvement called for by the contract is higher than
about 12% for a 5-year agreement, there is a fairly low probability of success.

30

SUMMARY AND CONCLUSIONS

As outsourcing and contracting grow in frequency and in dollar value, there is an urgent need for
software contracting groups, the legal profession, and management consultants to develop
contractual instruments that will be less ambiguous than has been the norm to date.

The root causes of disputes and litigation for breach of contract have centered around missed
delivery dates, cost overruns, creeping user requirements, and poor quality levels. All of these
root causes are now amenable to alleviation and even to complete elimination.

The usage of function point metrics for software contracts can minimize or eliminate many of the
problems associated with traditional software contracting practices. In addition, the utilization of
independent assessments and the utilization of explicit quality criteria can minimize other
common sources of friction.

Outsource agreements are often ambiguous in terms of software issues relating to baselines,
productivity, and quality levels. There has also been ambiguity in other key issues such as
responsibility for year 2000 repairs. As software outsource contracts increase in numbers,
there is a need to minimize the ambiguities in the contracts that might lead to conflict and
litigation.

SUGGESTED READINGS ON SOFTWARE TOPICS

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs, NJ;
1981; 900 pages.

Brooks, Fred; The Mythical Man Month; Addison-Wesley, Reading, MA; 1995; 295 pages.

Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition Best Practices;
Version 1.0; July 1995; U.S. Department of Defense, Washington, DC; 142 pages.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York; 1982; ISBN 0-
917072-32-4; 284 pages.

Department of the Air Force; Guidelines for Successful Acquisition and Management of
Software Intensive Systems; Volumes 1 and 2; Software Technology Support Center, Hill
Air Force Base, UT; 1994.

Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ; 1989; 225 pages.

31

Garmus, David & Herron, David; Measuring the Software Process: A Practical Guide to
Functional Measurement; Prentice Hall, Englewood Cliffs, NJ; Due out in November of
1995.

Grady, Robert B.; Practical Software Metrics for Project Management and Process
Improvement; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-720384-5; 1992; 270
pages.

Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a Company-Wide
Program; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-821844-7; 1987; 288 pages.

Howard, Phil; Guide to Software Productivity Aids; Applied Computer Research, Scottsdale,
AZ; ISSN 0740-8374; published quarterly.

Humphrey, Watts; Managing the Software Process, Addison-Wesley, Reading, MA; 1990.

Humphrey, Watts; A Discipline of Software Engineering; Addison-Wesley, Reading, MA;
1995; 785 pages.

Humphrey, Watts; Managing Technical People; Addison-Wesley, Reading, MA; ISBN 0-
201—54597-7, 1997; 326 pages.

IFPUG Counting Practices Manual, Release 3, International Function Point Users Group,
Westerville, OH; April 1990; 73 pages.

IFPUG Counting Practices Manual, Release 4, International Function Point Users Group,
Westerville, OH; April 1995; 83 pages.

IFPUG Counting Practices Manual, Release 4.1, International Function Point Users Group,
Westerville, OH; April 1999.

Jones, Capers; Applied Software Measurement; McGraw Hill, 2nd edition 1996; ISBN 0-07-
032826-9; 618 pages.

Jones, Capers; Critical Problems in Software Measurement; Information Systems Management
Group, 1993; ISBN 1-56909-000-9; 195 pages.

Jones, Capers; Software Productivity and Quality Today -- The Worldwide Perspective;
Information Systems Management Group, 1993; ISBN -156909-001-7; 200 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-13-
741406-4; 711 pages.

32

Jones, Capers; New Directions in Software Management; Information Systems Management
Group; ISBN 1-56909-009-2; 150 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson
Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8; 292
pages.

Jones, Capers; The Year 2000 Software Problem - Quantifying the Costs and Assessing the
Consequences; Addison Wesley, Reading, MA; 1998; ISBN 0-201-30964-5; 303 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International Thomson
Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; ISBN 0-07-
9130941; 1998; 724 pages.

Jones, Capers; “Sizing Up Software;” Scientific American Magazine; December 1998; Vol.
279, No. 6; pp 74-79.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley
Longman, Boston, MA; May 2000; ISBN 0-201-48542-7; 700 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering; Addison Wesley,
Reading, MA; ISBN 0-201-63339-6; 1995; 344 pages.

Marciniak, John J. (Editor); Encyclopedia of Software Engineering; John Wiley & Sons, New
York; 1994; ISBN 0-471-54002; in two volumes.

Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman, Lawrence,
KS; 1996. (This is a new CD ROM book collection jointly produced by the book
publisher, Prentice Hall, and the journal publisher, Miller Freeman. This CD ROM disk
contains the full text and illustrations of five Prentice Hall books: Assessment and Control
of Software Risks by Capers Jones; Controlling Software Projects by Tom DeMarco;
Function Point Analysis by Brian Dreger; Measures for Excellence by Larry Putnam and
Ware Myers; and Object-Oriented Software Metrics by Mark Lorenz and Jeff Kidd.)

Paulk, Mark, Curtis, Bill, et al; The Capability Maturity Model; Addison Wesley, Reading,
MA; ISBN 0-201 54664-7; 1995; 441 pages.

Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within Budget;
Yourdon Press - Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0; 1992; 336
pages.

33

Rubin, Howard; Software Benchmark Studies For 1998; Howard Rubin Associates, Pound
Ridge, NY; 1998.

Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point Analysis);
John Wiley & Sons, Chichester; ISBN 0 471-92985-9; 1991; 200 pages.

Wiegers, Karl E.; Creating a Software Engineering Culture; Dorset House, New York, NY;
ISBN 0-932633-33-1; 1996; 424 pages.

Yourdon, Ed; Death March – The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle River, NJ; 1997; ISBN
0-13-748310-4; 1997; 218 pages.

