

TThhee CCOOSSMMIICC FFuunnccttiioonnaall SSiizzee MMeeaassuurreemmeenntt MMeetthhoodd

VVeerrssiioonn 33..00

MMeetthhoodd OOvveerrvviieeww

September 2007

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 2

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS

‘COSMIC-FFP’ METHOD1 VERSION 2.0 AUTHORS (alphabetical order)

Alain Abran, École de technologie supérieure – Université du Québec,
Jean-Marc Desharnais, Software Engineering Laboratory in Applied Metrics - SELAM,
Serge Oligny, Bell Canada,
Denis St-Pierre, DSA Consulting,
Charles Symons, Software Measurement Services, UK

Version 2.0 reviewers 1998/1999 (alphabetical order)

Moritsugu Araki, JECS Systems
Research, Japan

Thomas Fetcke, Germany Patrice Nolin, Hydro Québec,
Canada

Fred Bootsma, Nortel, Canada Eric Foltin, University of Magdeburg,
Germany

Marie O’Neill, Software Management
Methods, Ireland

Denis Bourdeau, Bell Canada,
Canada

Anna Franco, CRSSM, Canada Jolijn Onvlee, The Netherlands *

Pierre Bourque, , ÉCole de
Technologie supérieure, Canada

Paul Goodman, Software
Measurement Services, United
Kingdom

Laura Primera, UQAM, Canada

Gunter Guerhen, Bürhen & Partner,
Germany

Nihal Kececi, University of Maryland,
United States

Paul Radford, Charismatek, Australia

Sylvain Clermont, Hydro Québec,
Canada

Robyn Lawrie, Australia Eberhard Rudolph, Germany

David Déry, CGI, Canada Ghislain Lévesque, UQAM, Canada Grant Rule, Software Measurement
Services, United Kingdom*

Gilles Desoblins, France Roberto Meli, Data Processing
Organization, Italy

Richard Stutzke, Science
Applications Int’l Corporation, United
States

Martin D’Souza, Total Metrics,
Australia

Pam Morris, Total Metrics, Australia* Ilionar Sylva, UQAM, Canada

Reiner Dumke, University of
Magdeburg, Germany

Risto Nevalainen, Software
Technology Transfer Finland,
Finland *

Vinh T. Ho, UQAM, Vietnam

Peter Fagg, United Kingdom Jin Ng, Hmaster, Australia

* Founding members of the COSMIC Core Team, along with the COSMIC-FFP Method v2.0 authors

1 Version 2.0 was the first publicly available version of the ‘COSMIC-FFP’ method, as it was first known

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 3

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Version 3.0 reviewers 2006/07 (alphabetical order)

Alain Abran, École de Technologie
Supérieure, Université du Québec,
Canada

Jean-Marc Desharnais, Software
Engineering Lab in Applied Metrics –
SELAM, Canada

Arlan Lesterhuis*, Sogeti, The
Netherlands

Bernard Londeix, Telmaco, United
Kingdom

Roberto Meli, Data Processing
Organization, Italy

Pam Morris, Total Metrics, Australia

Serge Oligny, Bell Canada Marie O’Neill, Software Management
Methods, Ireland

Tony Rollo, Software Measurement
Services, United Kingdom

Grant Rule, Software Measurement
Services, United Kingdom

Luca Santillo, Agile Metrics, Italy Charles Symons*, United Kingdom

Hannu Toivonen, Nokia Siemens
Networks, Finland

Frank Vogelezang, Sogeti, The
Netherlands

* Editors of version 3.0 of the COSMIC method

Copyright 2007. All Rights Reserved. The Common Software Measurement International Consortium
(COSMIC). Permission to copy all or part of this material is granted provided that the copies are not
made or distributed for commercial advantage and that the title of the publication, its version number,
and its date are cited and notice is given that copying is by permission of the Common Software
Measurement International Consortium (COSMIC). To copy otherwise requires specific permission.

Public domain versions of the COSMIC documentation, including translations into other languages can
be found on the Web at www.gelog.etsmtl.ca/cosmic-ffp

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 4

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

VVEERRSSIIOONN CCOONNTTRROOLL

The following table summarizes the changes to this ‘Method Overview’ document

DATE REVIEWER(S) Modifications / Additions

September
2007

COSMIC Measurement
Practices Committee

First version for public release. The content is partly based on
chapter 2 of the Measurement Manual v2.2, but has been
largely extended.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 5

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

FFOORREEWWOORRDD

The COSMIC method is a standardized method of measuring a functional size of software from the
functional domains commonly referred to as ‘business application’ (or ‘MIS’) software and ‘real-time’
software and hybrids of these.

The COSMIC method was accepted by ISO/IEC JTC1 SC7 in December 2002 as International
Standard ISO/IEC 19761 ‘Software Engineering – COSMIC-FFP – A functional size measurement
method’ (hereafter referred to as ‘ISO/IEC 19761’).

Purpose of this document

The purpose of this ‘Method Overview’ is to give a summary of the COSMIC functional size
measurement method, version 3.0. We envisage that this ‘Method Overview’ document will be of
interest to readers who

• need an overview of the method, but who do not need to know all its details
• are new to the idea of measuring functional sizes of software, and who need an introduction to the

subject
• are familiar with an existing ‘1st generation’ functional size measurement method (such as the

‘IFPUG’, ‘MkII’ or ‘NESMA’ methods) and who are considering advancing to the COSMIC method.

COSMIC Method Documentation

For a full account of the COSMIC Method documentation, please refer to ‘COSMIC Method v3.0:
Documentation Overview and Glossary of Terms’. The glossary of this document contains the
definition of all terms that are common to all COSMIC documents. This document and all other
COSMIC documents mentioned below may be down-loaded free-of-charge from
www.gelog.etsmtl.ca/cosmic-ffp

For clarity, and for the intended readers of this document, the other principal documents of interest will
be as follows.

• The ISO/IEC 19761 standard, which contains the fundamental normative definitions and rules of
the method.

• The ‘COSMIC Method version 3.0: Measurement Manual’, which provides these rules and
definitions, and also aims to provide further explanation and many more examples in order to help
measurers to fully understand and to apply the method. This should be the main ‘working
document’ that measurers will need in practice.

• The ‘COSMIC Method version 3.0: Advanced and Related Topics’, which contains material
beyond the basic method such as on approximate size measurement early in a project’s life and
on convertibility of functional sizes measured with other functional size measurement methods to
COSMIC sizes

Other COSMIC documentation available includes Guidelines for the method’s application in specific
software domains, various Case Studies illustrating the method’s use, research papers, benchmark
data, etc. Translations of the Measurement Manual into other languages are also available. All these
can be found on www.gelog.etsmtl.ca/cosmic-ffp.

More general background information on functional size measurement and its uses, on the
advantages of the COSMIC method, on the COSMIC organization and its activities, on suppliers of
COSMIC-related services, COSMIC Newsletters, etc., can be found on www.cosmicon.com

The COSMIC Measurement Practices Committee

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 6

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

TTAABBLLEE OOFF CCOONNTTEENNTTSS

1 INTRODUCTION..7

2 OVERVIEW OF THE COSMIC MEASUREMENT METHOD ..9
2.1 Applicability of the COSMIC method... 10

2.1.1 Applicable domains... 10
2.1.2 Non-applicability.. 10

2.2 The COSMIC software models ... 10
2.2.1 Functional User Requirements .. 10
2.2.2 The COSMIC Software Context Model... 11
2.2.3 The COSMIC Generic Software Model... 18

2.3 Overview of the COSMIC measurement process ... 21
2.3.1 The Measurement Strategy Phase ... 21
2.3.2 The Mapping Phase.. 23
2.3.3 The Measurement Phase.. 23

APPENDIX A - COSMIC CHANGE REQUEST AND COMMENT PROCEDURE............................... 25

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 7

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

11
INTRODUCTION

Software is a major component of many corporate budgets. Organizations recognize the importance
of controlling software expenses and analyzing the performance of the amounts allocated to software
development and maintenance in order to benchmark against the best in the field. Hence measures
are needed for analyzing both the quality and the productivity associated with developing and
maintaining software. On the one hand, technical measures are needed by developers to quantify the
technical performance of products or services. Technical measures can be used, for example, for
efficiency analysis or to improve the performance of designs, etc.

On the other hand, functional measures are needed, for example by developers to estimate or
measure software size from requirements early in a project’s life as the main input to estimating
project effort, or to quantify the performance of products or services from a user’s or owner’s
perspective for productivity analysis. Functional measures must be independent of technical
development and of implementation decisions. They can then be used to compare the productivity
obtained via different techniques and technologies.

Function Point Analysis (FPA)2 is an example of a functional size measurement method. It is available
for MIS domain software, where it has been used extensively in productivity analysis and estimation
(Abran, 1996; Desharnais, 1988; Jones, 1996; Kemerer, 1987). It can successfully capture the
specific functional characteristics of MIS software.

However, FPA has been criticized as not being universally applicable to all types of software [Conte,
1986; Galea, 1995; Grady, 1992; Hetzel, 1993; Ince, 1991; Jones, 1988; Jones, 1991; Kan, 1993;
Whitmire, 1992]. In particular, FPA has not been well accepted in the real-time software community.

The ‘Full Function Point’ method (version 1.0) was proposed in 19973 with the aim of extending FPA to
capture the functional size of real-time software and of technical and system software. Field tests
showed that FFP is also suited to measuring the functional size of MIS software, leading, in such
applications, to similar results4.

In 1998, the FFP group merged their efforts with the work of the COSMIC group5 which proposed the
principles for a second generation of functional size measurement methods. These efforts resulted in
the first, publicly-available ‘field trials’ version 2.0 of the COSMIC-FFP measurement method,
published in October 1999.

2 Albrecht A.J., Gaffney Jr. J.E., “Software function, source lines of code and development effort prediction: a software science
validation”, IEEE Transactions on Software Engineering, Vol. SE-9, pp. 639-648, November 1983. ‘FPA’ s now known as the
‘IFPUG’ method.
3 St-Pierre D., Maya M., Abran A., Desharnais J.-M., Bourque P., “Full Function Points: Counting Practices Manual”, Technical
Report 1997-04, Université du Québec à Montréal, Montréal, Canada. Available on the Web at URL: www.lrgl.uqam.ca/ffp.html
4 Oligny, S.; Abran, A.; Desharnais, J.-M.; Morris, P. , Functional Size of Real-Time Software: Overview of Field Tests, in
Proceedings of the13th International Forum on COCOMO and Software Cost Modeling, Los Angeles, CA, October 1998.

5 See www.cosmicon.com for further information.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 8

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

From version 2.0 onwards, the COSMIC measurement method has also been designed to ensure its
full compliance with the ISO/IEC 14143-1: 1998 standard (and subsequently ISO/IEC 14143-1: 2007)
as well as with the COSMIC principles.

From version 3.0, the method’s name has been simplified from ‘COSMIC-FFP’ to ‘COSMIC’

About the COSMIC initiative

Given the explosive growth and diversity of software contracting and outsourcing, suppliers and
customers need more accurate methods of estimating and of measuring performance. These
methods must work equally reliably across all types of software. ’First generation’ methods for
measuring the size of software are not always of sufficient strength to meet market needs, or work
only for restricted types of software. Industry urgently needs software size measures which are
demonstrably more accurate and more widely usable.

The COSMIC group aims to meet these needs of, firstly, software suppliers facing the task of
translating customer requirements into the size of software to be produced as a key step in their
project cost estimating and, secondly, of customers who want to know the functional size of delivered
software as an important component of measuring supplier performance.

COSMIC, the COmmon Software Measurement International Consortium, is a voluntary initiative of a
truly international group of software measurement experts, both practitioners and academics, from
Asia/Pacific, Europe and North America. The original aims of the COSMIC project were to develop, to
test, to bring to market and to seek acceptance of new software sizing methods to support estimating
and performance measurement. These aims have now been achieved and the method is being
accepted in a growing number of organizations in the public and private sectors around the world.

After the principles of the COSMIC method were first laid down in 1999, field trials were successfully
conducted in 2000/01 with several international companies and academic institutions. Papers
describing these trial results and many other research findings are listed on the
www.gelog.etsmtl.ca/cosmic-ffp site. The process of developing an International Standard for the
COSMIC method was started in 2001. The standard was approved in December 2002 and was
published by ISO in early 2003 as ISO/IEC 19761.

COSMIC continues to refine the definition and explanation of the method in light of practical
experience, though it must be emphasized that the Generic Software Model, which is the basis
for size measurement, has not changed since it was first published in 1999. Version 3.0 of the
Measurement Manual is the latest step in this process of refinement, which continues whilst always
remaining compatible with the ISO/IEC 19761 standard. The designation of ‘version 3.0’ compared
with the previous ‘version 2.2’ indicates that v3.0 represents an important step forward in the
refinement of the method. For a full account of the changes made in progressing from v2.2 to v3.0,
see ‘The COSMIC Method v3.0: Measurement Manual’

The Common Software Measurement International Consortium (COSMIC) envisages that these
additions and refinements will be submitted to ISO for inclusion in ISO/IEC 19761 when it is due for
revision in 2007/8.

In 2006, COSMIC introduced the first ‘Entry-level’ certification examinations for practitioners of the
method. Users of the COSMIC method are encouraged to submit performance data on their projects
to the database of the International Software Benchmarking Standards Group (‘ISBSG’), to enhance
the existing benchmark data related measured using the COSMIC method.

For further information about COSMIC, its publications, activities and examinations, please visit
www.cosmicon.com, or www.gelog.etsmtl.ca/cosmic-ffp. For further information about the ISBSG, visit
www.isbsg.org.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 9

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

22
OVERVIEW OF THE COSMIC MEASUREMENT METHOD

The COSMIC measurement method defines a standardized measure of software functional size. This
chapter presents and discusses:

• the types of software for which the method has been designed to measure functional size
(otherwise known as ‘the domain of applicability’ of the method) in section 2.1

• an overview of the software models used for measurement, in section 2.2. These models
introduce all the basic concepts of the COSMIC method. Understanding these concepts is
important because to measure the functional size of a real piece of software the measurer must
map from the actual artifacts of the piece of software (e.g. its statement of requirements or its
physical implementation) onto the concepts of the COSMIC models

• an overview of the general COSMIC measurement process, which consists of three phases:
o the Measurement Strategy, performed before starting a measurement (subsection 2.3.1)
o the Mapping Phase (subsection 2.3.2)
o the Measurement Phase (subsection 2.3.3)

The result of the measurement process is a size measure expressed in ‘COSMIC Function Points’ (or
‘CFP’). These phases are illustrated in Fig. 2.0 below.

Functional User Requirements (FUR) in the
artefacts of the software to be measured

Measurement
Strategy

The Measurement Process

Generic Software Model

Mapping
Phase

Purpose of the
measurement. Scope of
each piece of software

to be measured

FUR in the form of the
Generic Software Model

Measurement
Phase

Goals

Software Context Model

Functional
size of the
software in

units of CFP

Functional User Requirements (FUR) in the
artefacts of the software to be measured

Measurement
Strategy

The Measurement Process

Generic Software Model

Mapping
Phase

Purpose of the
measurement. Scope of
each piece of software

to be measured

FUR in the form of the
Generic Software Model

Measurement
Phase

Goals

Software Context Model

Functional
size of the
software in

units of CFP

Figure 2.0 – Structure of the COSMIC method

The overviews of subsections 2.3.1, 2.3.2 and 2.3.3 are each expanded in a chapter of the
Measurement Manual, where the complete and detailed definitions, principles and rules of the method
are given with illustrative examples.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 10

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

2.1 Applicability of the COSMIC method

2.1.1 Applicable domains

The COSMIC measurement method is designed to be applicable to the functionality of software from
the following domains:

• Business application software which is typically needed in support of business administration,
such as banking, insurance, accounting, personnel, purchasing, distribution or manufacturing.
Such software is often characterized as ‘data rich’, as it is dominated largely by the need to
manage large amounts of data about events in the real world.

• Real-time software, the task of which is to keep up with or control events happening in the real
world. Examples would be software for telephone exchanges and message switching, software
embedded in devices to control machines such as domestic appliances, lifts, car engines and
aircraft, for process control and automatic data acquisition, and within the operating system of
computers.

• Hybrids of the above, as in real-time reservation systems for airlines or hotels for example.

2.1.2 Non-applicability

The COSMIC measurement method has not yet been designed to take into account the functionality of
mathematically-intensive software, that is, software which is characterized by complex mathematical
algorithms or other specialized and complex rules, such as in expert systems, simulation software,
self-learning software, weather forecasting systems, etc., or which processes continuous variables
such as audio sounds or video images, such as, for instance, in computer games, musical
instruments, etc. Nor does the COSMIC method attempt to measure aspects of functionality such as
‘complexity’ (however defined) that might be considered to contribute to software ‘size’.

For software with such functionality it is possible, however, to define local extensions to the COSMIC
measurement method. The Measurement Manual explains in what contexts such local extensions
should be used and provides examples of a local extension.

2.2 The COSMIC software models

This section provides an overview of the COSMIC method and all of its basic concepts. The
definitions of all these concepts are given in the document ‘COSMIC Method v3.0: Documentation
Overview and Glossary of Terms’. In this section, the first time the term for one of these concepts is
used, it is given in bold.

It is essential that measurers understand ALL of the COSMIC models and basic concepts described
below and are able to apply ALL of the principles and rules described in the chapters of the
Measurement Manual when carrying out a measurement. Only by this discipline can the measurer be
sure that measurements are meaningful and will be repeatable by other measurers on the same
software and/or may be compared with measurements made by other measurers in different software
environments.

2.2.1 Functional User Requirements

The COSMIC measurement method involves applying a set of models, principles, rules and processes
to the Functional User Requirements (or ‘FUR’) of a given piece of software. The result is a

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 11

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

numerical ‘value of a quantity’6 representing the functional size of the piece of software according to
the COSMIC method in units of ‘COSMIC Function Points’ (or ‘CFP’).

The functional size produced by the COSMIC measurement method is designed to be independent of
any implementation decisions embedded in the operational artifacts of the software to be measured.
‘Functionality’ is concerned with ‘the information processing that the software must perform for its
users’.

More specifically, a statement of FUR describes ‘what’ the software must do for the functional users.
These are ‘the senders and intended recipients of data to and from the required functionality’. A
statement of FUR excludes any technical or quality requirements that say ‘how’ the software must
perform. Only the FUR are taken into account when measuring a functional size.

Extracting the functional user requirements from software artifacts in practice

In the real world of software development it is rare to find artifacts for the software in which the FUR
are clearly distinguished from other types of requirements and are expressed in a form suitable for
direct measurement without any need for interpretation. This means that usually the measurer will
have to extract the FUR as supplied in or implied in the actual artifacts of the software, before
mapping them to the concepts of the COSMIC ‘models of software’.

Functional User Requirements can be derived from software engineering artifacts that are produced
before the software exists, such as ‘Requirements Definition’ documents, the results of data or
functional analysis of the requirements, etc, Hence the functional size of software can be measured
prior to its implementation in a computer system.

In other circumstances, some existing piece of software may need to be measured without there being
any, or with only a few, architecture or design artifacts available, and the FUR might not be
documented (e.g. for legacy software). In such circumstances, it is still possible to derive the FUR
from the artifacts installed on the computer system, such as physical screens or reports or by
examining the data flows, after it has been implemented.

Extracting or deriving the functional user requirements from software artifacts

The process to extract the FUR from different types of software engineering artifacts or to derive them
from installed software and to express them in the form of the COSMIC software models will obviously
vary depending on the types of artifacts. Such processes are domain-dependent and vary so much
that they cannot be dealt with in the COSMIC method. The latter assumes that the functional user
requirements of the software to be measured either exist or can be extracted or derived from its
artifacts. However, COSMIC also publishes domain-dependent ‘Guidelines’ which describe some
aspects of deriving FUR.7

The COSMIC method therefore limits itself to describing and defining the concepts of the COSMIC
software models, i.e. the targets of the extraction or derivation process. These concepts are
embodied in two COSMIC software models – the ‘Software Context Model’ and the ‘Generic Software
Model’.

2.2.2 The COSMIC Software Context Model

A piece of software to be measured must be carefully defined (in the measurement scope) and this
definition must take into account its context of any other software and/or hardware with which it

6 As defined by ISO, see ‘The COSMIC Method v3.0: Documentation Overview and Glossary of Terms’
7 The ‘Guideline for Sizing Business Application Software using COSMIC’ gives guidance on the mapping from various data
analysis and requirements determination methods used in the business application domain to the concepts of COSMIC

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 12

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

interacts. This Software Context Model introduces the principles and concepts needed for this
definition.

PRINCIPLES – The COSMIC Software Context Model

a) Software is bounded by hardware
b) Software is typically structured into layers
c) A layer may contain one or more separate ‘peer’ pieces of software and any one

piece of software may further consist of separate peer components
d) Any piece of software to be measured, shall be defined by its measurement scope,

which shall be confined wholly within a single layer
e) The scope of a piece of software to be measured shall depend on the purpose of

the measurement
f) The functional users of a piece of software shall be identified from the functional

user requirements of the piece of software to be measured as the senders and/or
intended recipients of data

g) A piece of software interacts with its functional users via data movements across
a boundary and the piece of software may move data to and from persistent
storage within the boundary

h) The FUR of software may be expressed at different levels of granularity
i) The level of granularity at which measurements should normally be made is that of

the functional processes (see section 2.2.3)
j) If it is not possible to measure at the level of granularity of the functional processes,

then the FUR of the software should be measured by an approximation approach
and scaled to the level of granularity of the functional processes8

These principles and concepts will now be elaborated and illustrated with some simple examples.

To do this, we need to distinguish two views of a computer hardware/software system, that is, of the
context of a piece of software to be measured, namely

• The ‘physical’ view, which shows how in practice the software is typically structured into a
hierarchy of layers, each with its own specialist function. This view shows that in reality, all
communication with any piece of software takes place via hardware devices and (maybe) other
intermediate software layers

• The ‘logical’ view, which is an abstraction of the physical view used for functional size
measurement purposes. This view shows that the functional users of a piece of software to be
measured (‘the senders and/or intended recipients of data’) interact with the software across a
boundary and that the software moves data to and from persistent storage. In this abstraction all
hardware and software that enables these interactions is ignored.

Whilst only the second view is needed for functional size measurement purposes, it is helpful to
explain both views, since measurers must be able to distinguish the two views. Furthermore, the
COSMIC method uses terms such as ‘layer’ and ‘peer component’ in very specific ways which need to
be understood. (These terms are used with many different meanings in the software industry.)

Fig. 2.2.2.1 illustrates the physical view for a typical piece of business application software in its
context of a layered software architecture comprising the operating system, device drivers, etc, and of

8 The subject of scaling between different levels of granularity is dealt with in the COSMIC method v3.0 document ‘Advanced
and Related Topics’

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 13

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

the hardware. Fig. 2.2.2.2 illustrates the same physical view for a simple example of real-time
embedded software.

Middleware Layer (Utilities, etc)

Operating System Layer

Keyboard
Driver

Screen
Driver

VDU
ScreenKeyboardHardware

Software

Layers

Disk
Driver

Hard Disk
Drive

Print
Driver

Printer Central
Processor

Fig. 2.2.2.1 Typical layered software architecture for a Business/MIS computer system

Database Management
System Layer DBMS 1 DBMS 2

App 1Application Layer App 2 App ‘n’

Subordinate
Layer

Superior
Layer

relies on

Key:

Middleware Layer (Utilities, etc)

Operating System Layer

Keyboard
Driver

Screen
Driver

VDU
ScreenKeyboardHardware

Software

Layers

Disk
Driver

Hard Disk
Drive

Disk
Driver

Hard Disk
Drive

Print
Driver

Printer

Print
Driver

Printer Central
Processor

Central
Processor

Fig. 2.2.2.1 Typical layered software architecture for a Business/MIS computer system

Database Management
System Layer DBMS 1 DBMS 2

App 1Application Layer App 2 App ‘n’

Subordinate
Layer

Superior
Layer

relies on

Key:

Subordinate
Layer

Superior
Layer

relies on

Subordinate
Layer

Superior
Layer

relies on

Key:

Operating System Layer

Sensor
Driver

Display

Mem. Chip
Driver

CV
Driver

Control
Valve(s)

Memory
Chip

Central
ProcessorSensor(s)Hardware

(Examples)

Software

Layers

Display
Driver

Fig. 2.2.2.2 Typical layered architecture for a real-time embedded-software computer system

Embedded Application Layer

Subordinate
Layer

Superior
Layer

relies on

Key:

Operating System Layer

Sensor
Driver

Display

Mem. Chip
Driver

CV
Driver

Control
Valve(s)

Memory
Chip

Central
ProcessorSensor(s)Hardware

(Examples)

Software

Layers

Display
Driver

Display
Driver

Fig. 2.2.2.2 Typical layered architecture for a real-time embedded-software computer system

Embedded Application Layer

Subordinate
Layer

Superior
Layer

relies on

Key:

Subordinate
Layer

Superior
Layer

relies on

Subordinate
Layer

Superior
Layer

relies on

Key:

Principle (a).

Software used by a human user is bounded by I/O hardware such as a mouse, a keyboard, a printer
or a display; real-time embedded software is typically bounded by engineered devices such as
sensors or relays. Software is also bounded by ‘persistent storage’ hardware such as a hard disk, or
other types of memory that can be used to retain data.

Principle (b)

If the piece of software to be measured is part of a designed, layered architecture, it should be easy to
decide on the layer to which the piece belongs. However, if a software environment has grown and

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 14

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

evolved over time, the layers (if any) may not be clearly distinguishable. For these circumstances, the
COSMIC method includes some rules for distinguishing layers.

Principle (c)

For example, the separate main components of a business application (e.g. a ‘three-peer’ architecture
of a ‘front end / user interface’ component, a ‘business rules’ component and a ‘data services
‘component) are peer components. Such main peer components may be sized separately and the
COSMIC method gives rules for such sizing. This ability to measure separately the sizes of the main
components of a piece of software when they execute on different technical platforms is very
important in practice for the purposes of performance measurement and estimating.

Any piece of software in any layer can of course be decomposed into its components at various levels
(e.g. down to individual modules or object-classes) and the COSMIC method can be used to measure
a functional size at any such level. Measurers will, however, need to define their own local standard
levels of decomposition (in liaison with the software or system architect) below the level of the main
peer components in any one layer if they wish to ensure comparability of measurements from different
sources.

Principle (d)

Principle (d) requires that the scope of any piece of software to be measured, shall be confined wholly
within a single layer. The reason for this is that each layer has a specialized function and may be
developed using different technology from other layers. So it may or may not make sense to measure
the sizes of some pieces of software residing in two or more layers and then to aggregate those sizes
as if the result represented the size of a single entity. The resulting size measure might, like the sum
of the sizes of some apples and oranges, be very difficult to interpret and/or to compare with other
functional size measurements. For rules on aggregating the sizes of pieces of software in different
layers, see the section on aggregating measurement results in the Measurement Manual.

Principle (e)

As an example, assuming the pieces of application software in Figs. 2.2.2.1 and 2.2.2.2 are each
separate pieces of software, developed by their own project teams, then in each case, for most normal
measurement purposes it would make sense to define the measurement scope as the ‘whole
application’. However, if an application is developed as three main peer components (as mentioned in
relation to principle (c) above) each using different technologies and/or by different project teams, then
if the purpose is project effort estimating, it would make sense to define three separate measurement
scopes, one for each peer component. The size measurements of each of the three separate
components could then be used as input to an estimating formula that is able to account for the
different technologies and/or project team characteristics used for each component.

Principle (f)

To illustrate this principle and the next principle (g), we need to examine the logical view of the
software to be measured. Figures 2.2.2.3 and 2.2.2.4 illustrate this logical view showing the
interaction of ‘functional users’ with a piece of business application software and with a piece of real-
time embedded application software respectively.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 15

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Application
being

measured

A ‘peer’
application

functional user The

application

layer

Boundary

Human
functional
user (s) E

Entries

Exits

Reads Writes

Boundary

Persistent
storage

X

X E

Indicates a message that is issued as an Exit data movement,
crosses a boundary, and is received as an Entry data movement

X E

Application
being

measured

A ‘peer’
application

functional user The

application

layer

BoundaryBoundary

Human
functional
user (s) E

Entries

Exits

Reads Writes

Boundary

Persistent
storage

X

X EX E

Indicates a message that is issued as an Exit data movement,
crosses a boundary, and is received as an Entry data movement

X E Indicates a message that is issued as an Exit data movement,
crosses a boundary, and is received as an Entry data movement

X E

Figure 2.2.2.3 - A business application with both humans and another ‘peer’ application as its functional

users (logical view)

Application

Layer

Application
being

measured

Boundary

Hardware
engineered

device
functional
user (s)

Entries

Exits

Reads Writes

Persistent
storage

Application

Layer

Application
being

measured

BoundaryBoundary

Hardware
engineered

device
functional
user (s)

Entries

Exits

Reads Writes

Persistent
storage

Figure 2.2.2.4 - A real-time embedded software application with various hardware engineered devices as

its functional users (logical view)

Consider the example of a piece of business application software to be measured. Fig. 2.2.2.1 shows
that the ‘users’ of the application could be considered to include the operating system, any of the
hardware devices (e.g. the keyboard, the printer, etc.) and the human users because they can all be
said to ‘interact’ with the application, directly or indirectly. But not all of these (types of) users will be
specified in the FUR as the senders and intended recipients of data to/from the application. The
operating system and the hardware devices are ‘enablers’ of these data exchanges, rather than
senders or intended recipients.

For a piece of business application software, the FUR will normally only ever describe the required
functionality from the viewpoint of the human users of the application, and maybe other peer
applications that send or receive data to/from the application. These humans and peer applications
will therefore be the ‘functional users’ of the application, as how in the logical view of Fig. 2.2.2.3.

Because of the strict separation of functionality into layers as in Fig. 2.2.2.1, the FUR of a business
application can normally ignore any software layers or hardware devices such as the operating system

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 16

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

or screens that enable the interaction of the functional users with the application. There should never
normally be any doubt about the identity of the functional users.

For the example of the embedded real-time software, its FUR would normally describe the functionality
required from the viewpoint of the hardware devices (the sensors, valves, etc) that the software must
support. These devices will therefore be the ‘functional’ users of the embedded software, as shown in
Fig. 2.2.2.4. But as we shall see in the Measurement Manual, though uncommon, the FUR of some
types of software may sometimes be written where there is more than one type of functional user, thus
giving rise to different functionality and hence of functional size.9

Principle (g)

Figs. 2.2.2.3 and 2.2.2.4 also illustrate that functional users interact with software across a boundary
via two types of movement of data (Entries and Exits). Software also exchanges data with persistent
storage hardware via two types of data movement (Reads and Writes). These data movements are
defined further in section 2.2.3

The ‘boundary’ is defined as ‘a conceptual interface between the software under study and its
functional users’. This boundary should not be confused with any line that might be drawn on a
diagram to depict the scope of a piece of software to be measured, or around a software layer.

The boundary allows a clear distinction to be made between anything that is part of the piece of
software being measured (i.e. that is on the software side of the boundary) and anything that is part of
the functional users’ environment (i.e. that is on the functional users' side the boundary). Persistent
storage is not considered as a user of the software and is therefore on the software side of the
boundary.

Fig. 2.2.2.5 now illustrates the logical view of some business application software that has been
developed as three main peer components as described in principles (c) and (e) above. Supposing
that the peer components have been developed using different technologies, it is likely that the
purpose of the measurement would dictate that a separate measurement scope should be defined for
each peer component.

Front end/
user

Interface

Business
Rules

The

‘Application

Layer’

Boundary

Human
Functional
User (s)

Entry

Exit

Reads Writes

Persistent
Storage

Data
Services

E

X

Boundary

X

E

E

X

Boundary

X

E

Indicates a message that is issued as an Exit data movement,
crosses a Boundary, and is received as an Entry data movement

X E

Front end/
user

Interface

Business
Rules

The

‘Application

Layer’

Boundary

Human
Functional
User (s)

Entry

Exit

Reads Writes

Persistent
Storage

Data
Services

E

X

Boundary

X

E

E

X

Boundary

X

E

E

X

Boundary

X

E

E

X

Boundary

X

E

Indicates a message that is issued as an Exit data movement,
crosses a Boundary, and is received as an Entry data movement

X E Indicates a message that is issued as an Exit data movement,
crosses a Boundary, and is received as an Entry data movement

X E

Figure 2.2.2.5 – A business application when its main ‘peer’ components must be measured separately

(logical view)

9 An exception when the operating system can be a functional user of an application is when the operating system is required by
the application FUR to supply, for example, a ‘clock tick’ to start a functional process in the application.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 17

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

In the logical view of Fig. 2.2.2.5, we see that the ‘front end / user interface’ component has humans
and the ‘business rules’ components as its functional users, each interacting with the component via
Entries and Exits across a boundary. This Figure also shows that only the ‘data services’ component
interacts with the persistent storage, and that its functional user is the ‘business rules’ component.
With these logical views, the FUR of each component can be measured separately.

Principle (h) and (i)

The FUR of software may be expressed at different ‘levels of granularity’. (Note that the concept of
‘level of granularity’ is concerned with the level of detail of the description of a piece of software. This
must be distinguished from ‘level of decomposition, which is concerned with the breakdown of
software into its component parts.) The level of granularity at which measurements should normally
be made is that of the functional processes (see section 2.2.3). When starting a new software
development, the process of determining the functional user requirements (‘FUR’) of software typically
starts with defining and agreeing a ‘high-level’ statement of requirements, which is then refined and
worked out in more detail. The FUR of a piece of software of a given scope may therefore exist at
different levels of granularity. A typical example of using a ‘functional analysis’ technique to determine
the FUR of a piece of software might result in the following hierarchy of levels of the FUR.

A ‘level 1’ main function’, when analysed in more detail is shown to consist of a number of ‘level 2
functions’, Each of these consists of ‘level 3 sub-functions’, each consisting of ‘level 4 sub-sub-
functions’, etc. At some point in this hierarchy, the analysis will reveal individual functional processes
(See section 2.2.3 for more on these; for now we need think of these only as standard chunks of
functionality that we can measure.)

As the analysis ‘zooms in’ on more and more detail, the measured functional size may well appear to
increase because more details must be taken into account. (Note: this phenomenon is different to that
of ‘scope creep’, in which size increases because the scope of the software increases.)

Consequently, in order to be able to compare measurements sensibly from different sources or to use
measurements in some other process, all measurements must be made at (or scaled to) a standard
level of granularity, which we call the ‘functional process level of granularity’. In most cases, when the
purpose is to measure the functional size of a fully-specified or of an existing piece of software, the
functional process level of granularity at which to measure is self-evident.

Everyone is familiar with the idea of measuring distances on maps using different scales, for example,
where 1 km is represented on a map by 1 cm or 1 mm, and converting distances from one scale to
another. But when measuring the functional size of a piece of software using COSMIC, we have only
one standard ‘functional process level of granularity’ and only one unit of measure. So if we need to
compare measurements made at different levels of granularity, we must invent our own local scaling
factors to convert sizes to the units at the standard functional process level of granularity. These
concepts are explored further in the section on the standard level of granularity in the Measurement
Manual.

Principle (j)

The problem of needing to measure a piece of software at a level of granularity higher than that of its
functional processes normally arises only in the early stages of new software developments whilst the
requirements are still evolving. In such circumstances when it is not possible to measure at the level
of granularity of the functional processes, then the FUR of the software should be measured by an
approximation approach and scaled to the level of granularity of the functional processes (see the
chapter on early sizing in the document 'COSMIC Method v3.0: Advanced and Related Topics').

In summary, the Software Context Model of the COSMIC measurement method provides a set of
concepts and principles, namely software layers and peer components, the scope of a piece of
software to be measured, its functional users, data movements and a boundary to help measure
functional user requirements, which may be drawn up at different levels of granularity. During the

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 18

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Measurement Strategy process (as described in section 2.2.4) we apply these concepts and principles
to the FUR of the software to be measured to answer questions such as ‘what measurement is
required?’ or ‘how do we interpret this measurement?’

2.2.3 The COSMIC Generic Software Model

Having interpreted the FUR of the software to be measured in terms of the Software Context Model,
we now apply the Generic Software Model to the FUR to identify the components of the functionality
that will be measured. This Generic Software Model assumes that the following general principles
hold true for any software that can be measured with the method. See the Glossary for the definition
of all terms10.

PRINCIPLES – The COSMIC Generic Software Model

a) Software receives input data from its functional users and produces output,
and/or another outcome, for the functional users

b) Functional user requirements of a piece of software to be measured can be
mapped into unique functional processes

c) Each functional process consists of sub-processes
d) A sub-process may be either a data movement or a data manipulation
e) Each functional process is triggered by an Entry data movement from a functional

user which informs the functional process that the functional user has identified
an event

f) A data movement moves a single data group
g) A data group consists of a unique set of data attributes that describe a single

object of interest
h) There are four types of data movement. An Entry moves a data group into the

software from a functional user. An Exit moves a data group out of the software
to a functional user. A Write moves a data group from the software to persistent
storage. A Read moves a data group from persistent storage to the software

i) A functional process shall include at least one Entry data movement and either a
Write or an Exit data movement, that is it shall include a minimum of two data
movements

j) As an approximation for measurement purposes, data manipulation sub-
processes are not separately measured; the functionality of any data manipulation
is assumed to be accounted for by the data movement with which it is associated.

These principles arise from a common understanding of software as follows.

Principles (a) to (e)

The task of software is to respond to events that occur on the functional users' side of its boundary,
i.e. in the world of its functional users. A functional user notifies software of the occurrence of an
event and may send data about the event. The software must do something useful for the functional
user in response to that event. We call this ‘something useful’ a ‘functional process’. All software FUR
can therefore be expressed as a list of types of events and of the corresponding functional processes
that carry out the response of the software to each event.

10 As noted in the glossary, any functional size measurement method aims to identify ‘types’ and not ‘occurrences’ of data or
functions. In the text below, the suffix ‘type’ will therefore be omitted when mentioning COSMIC basic concepts unless it is
essential to distinguish ‘types’ from ‘occurrences’.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 19

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Principles (c) and (d) tell us that functional processes can be regarded as consisting of two types of
sub-processes, namely data movements and data manipulation. Software can only move and/or
manipulate data.

Fig. 2.2.3.1, below, illustrates principles (b) to (d) of the Generic Software Model.

Functional User
Requirements

Data movement Data manipulation

Sub-processes

Software

Functional
processes

Functional User
Requirements

Data movement Data manipulation

Sub-processes

Software

Functional
processes

Figure 2.2.3.1 – The structure of Functional User Requirements

Principles f) and g)

Each data movement carries only one data group, that is, data about a single object of interest, i.e. a
thing ‘of interest’ to a functional user. As an example in the domain of business application software, a
relatively simple functional process to enter an order might typically involve the following data
movements (objects of interest are all given in inverted commas in the following):

• Two Entries of data groups about the ‘order’ and ‘order-item’ (assuming a multi-item order). The
first of these Entries of data describing the ‘order’ object of interest is the one that triggers (or
starts) the functional process

• Two Reads of data groups about ‘customer’ and ‘product’ to validate that the customer is allowed
to order and that the required products are valid and available

• Two Writes of data groups about the ‘order’ and the ‘order-item’ to move the entered data to
persistent storage

• One or more Exits of data groups containing for instance an ‘order-confirmation’ message
including the total order value, an instruction to the warehouse to pick each ‘order-item’, etc.

All of these objects of interest are real or conceptual things in the real world of the functional users
(human, in this case), about which the piece of software is required to process data. They must be
identified and distinguished in order to identify the data movements.

When measuring real-time or embedded software exactly the same principles apply, though very often
the ‘functional user’ and the ‘object of interest’ are in practice virtually indistinguishable. For example,
suppose a functional process needs to obtain the current temperature from a sensor, and assume the
sensor is equipped such that it can communicate directly with software; the sensor is thus a functional
user of the piece of software. In this case, the sensor sends an Entry data movement that has
probably only two data attributes (the sensor ID and the temperature). These two attributes convey
data about the sensor (as object of interest) – or though it could equally be argued that the object of
interest is the ‘thing’ whose temperature is measured by the sensor.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 20

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Suppose then a very simple real-time functional process to measure temperature via a sensor and to
control it against a target temperature. This functional process is triggered at regular intervals by a
signal from a clock, and would consist of the following data movements.

• An Entry from the clock that triggers (starts) the functional process
• An Entry from the temperature sensor containing the sensor ID and the current temperature
• A Read of the target temperature from persistent storage (assuming that the target temperature

can be set and varied by another functional process)
• An Exit to the heater containing a signal to switch it on or off, if the heater’s state needs to be

changed

Note that in this very simple example, all but one of the data groups consists of only one data attribute.

Principle (h)

This principle tells us that the four types of data movements are distinguished by their source and
destination. Data movements either cross the boundary between the software being measured and its
functional users (Entries and Exits) or move between the software and persistent storage (Reads and
Writes). These relationships are shown in fig. 2.2.3.2 below.

Manipulation

Boundary

Entry Exit

WriteRead

: Data movement type
sub-processes

Functional
process

Functional users

Persistent
storage

ManipulationManipulation

Boundary

EntryEntry ExitExit

WriteWriteReadRead

: Data movement type
sub-processes

: Data movement type
sub-processes

Functional
process

Functional users

Persistent
storage

Figure 2.2.3.2 – The components of a functional process and some of their relationships

Principle (i)

This principle states that a functional process must have at least two data movements. This follows
from the preceding principles. A functional process that receives only one data movement and does
nothing with it would be practically useless. Therefore, all functional processes must have at least one
data movement informing it about the occurrence of an event (an Entry), and at least one other data
movement as a response (or useful outcome), either to a functional user (an Exit) or to persistent
storage (a Write).

Principle (j)

For measurement purposes, and given the software domain for which the method has been designed,
the COSMIC method assumes a simplification of the Generic Software Model.

As a first approximation in this version of the measurement method, data manipulation-type sub-
processes, illustrated in figure 2.2.3.2, are not recognized separately but are considered to be
associated with or part of specific data movement sub-processes. (From now on therefore, for brevity,
the expression ‘data movement’ will be used, rather than ‘data movement sub-process’.). The reason
for this approximation is that the necessary concepts and definitions, required to measure data

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 21

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

manipulations are still the subject of much debate and discussion among software engineering
specialists. The specific type of data manipulation functionality considered to be included within each
type of data movement is described in the subsection on the data manipulations associated with the
data movement, in the Measurement Manual.

Given this approximation we can see why the standard COSMIC method is suitable for sizing
‘movement-rich’ types of software, such as in most business applications and much real-time software,
but is unsuited for sizing ‘manipulation-rich’ (or ‘algorithm-rich’) software. The Measurement Manual
also points out the need for caution when measuring very small pieces of software, and especially
small changes to software, where the assumption of principle (j) may no longer be valid.

The Measurement Manual also provides a mechanism for defining a local extension to the COSMIC
method that enables an organization to account explicitly for data manipulation functionality, if it
should so desire. For such cases, special reporting conventions are also defined.

By using the concepts and their definitions, and the principles and rules of the COSMIC measurement
method, the functional user requirements extracted from the artifacts of a piece of software can be
mapped onto the Generic Software Model, thereby instantiating it. This instantiated model will contain
all the elements required for measuring its functional size, while hiding information not relevant to
functional size measurement.

The measurement rules and processes are then applied to this instantiated Generic Software Model in
order to produce a value of a quantity representing the functional size of the piece of software – see
2.3.3 below for the measurement rules.

2.3 Overview of the COSMIC measurement process

Three distinct and related phases are necessary to measure the functional size of a piece of software:

1. Setting the measurement strategy using the principles of the Software Context Model
2. Mapping the artifacts of the software to be measured onto the Generic Software Model
3. Measuring the specific elements of this model.

2.3.1 The Measurement Strategy Phase

Before starting a measurement, the measurer must agree with the sponsors of the measurement and
must document (a) the purpose of the measurement, (b) the scope of each piece of software to be
measured, (c) the functional users of each piece and hence the boundary of each piece, and (d) the
level of granularity at which the measurements are required. Establishing a clear statement of the
purpose (a) of the measurement is critically important because it determines the other three
parameters (b), (c), and (d). Determining these three parameters will very often be an iterative
process.

 (a) The purpose of the measurement

The purpose of the measurement establishes why the measurement is being carried out and what the
results will be used for. This in turn will help determine not only the other three parameters of the
Measurement Strategy, but also, for example, the required accuracy of the measurement. (As will be
seen in the chapter on early sizing in the ’Advanced and Related Topics’ document, it is possible to
estimate a functional size with an approximation variant of the basic COSMIC method. This variant
can be applied early in a project life-cycle before all the requirements have been established in
sufficient detail to measure a size according to the exact rules of the method).

(b) The scope of the software to be measured

The overall scope of the software to be measured follows from the purpose. The overall scope
establishes what software functionality will be included in a measurement (and what will be excluded).

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 22

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

Depending on the purpose, the overall scope may need to be sub-divided into a number of separate
pieces of software functionality, each to be measured separately with its own scope.

Such a sub-division of the overall scope would first be necessary if the overall scope includes software
in more than one layer, because any piece of software to be measured must reside wholly within one
layer. Second, a sub-division might be necessary, for example, if the measurement purpose is
concerned with estimating, and the total software to be measured comprises separate components
that will be developed with different techniques and/or technologies and/or execute on separate
technical platforms and/or be developed by separate teams. Each component would then have its
own measurement scope.

(c) The functional users and the boundary of each piece of the software to be measured

The functional users of each piece of software can be identified by examining the data flows in and out
of the software as stated or implied in its functional user requirements and taking into account the
purpose of the measurement. The functional users will be the senders or intended recipients of the
data.

In most circumstances, identifying the functional users is obvious from the purpose of the
measurement and from the FUR. Exceptionally, the functional users may vary depending on the
purpose of the measurement. An example will be given in the subsection on functional users in the
Measurement Manual that illustrates a case where there may be a choice.

When the functional users are known, the boundary - the conceptual interface between the functional
users and the piece of software to be measured - can be easily established.

(d) The level of granularity of the measurements

The level of granularity of the FUR of a piece of software at which the measurements should normally
be made is the level at which the functional processes are identified and their breakdown into data
movements is defined.

Where the purpose is to measure the FUR of some fully-specified or existing piece(s) of software, the
level of granularity is normally self-evident when the functional processes have been identified.

On the other hand, in the early stages of software development where the purpose is to measure the
FUR of some piece(s) of software as they evolve, the FUR may have to be measured before the point
where any or all of the individual functional processes have been revealed and their data movements
defined. To complicate matters further, the FUR of the different pieces may exist at different levels of
granularity at the time the measurement is needed. In these circumstances, some ‘functional units‘
will need to be defined locally that can be identified and counted in the available software artifacts and
a method will be needed to scale from the level of granularity where the size is measured by the
counts of the functional units to the level of granularity at which functional processes can be identified
and sized (i.e. to COSMIC Function Points). Such scaling methods are discussed in the section on
identifying a standard level of granularity of the Measurement Manual and in the document ‘Advanced
and Related Topics’.

Having completed these steps (a) to (d), some iteration may be needed. For example, as some
requirements are revealed in more detail, this could lead to a need to refine the scope of the piece(s)
of software to be measured.

A full discussion with definitions and more examples of purpose, scope, functional users and of the
level of granularity is given in the chapter on the Measurement Strategy of the Measurement Manual.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 23

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

2.3.2 The Mapping Phase

The Mapping Phase takes as input the functional user requirements of each piece of software to be
measured extracted from its artifacts (as they are found or documented within the organization or as
they are inferred from the existing physical software), taking into account the Software Context Model.
The output from the Mapping Phase is an instance of the Generic Software Model.

The steps of instantiating a Generic Software Model in the Mapping Phase are then:

• identify the events in the world of the functional users that the software must respond to and
hence identify the functional processes

• identify the data movements (Entries, Exits, Reads and Writes) of each functional process, which
in turn depends on identifying the data groups that are moved.

A full discussion with definitions and examples of the concepts and steps of the Mapping Phase is
given in the related chapter of the Measurement Manual.

2.3.3 The Measurement Phase

The Measurement Phase takes as input an instance of the Generic Software Model and, using a
defined set of rules and processes, produces a numerical value, the magnitude of which is directly
proportional to the functional size of the model, based on the following principle:

PRINCIPLE – The COSMIC measurement principle

The functional size of a piece of software is directly proportional to the number of its
data movements.

The characteristics of the set of rules and processes governing the production of this numerical value
are as follows:

Characteristic 1 – Unit of measure

The measurement standard, namely 1 CFP (COSMIC Function Point), is defined by convention as
equivalent to a single data movement.

Characteristic 2 – Additivity of sizes within a given measurement scope

The functional size of a functional process is defined as the arithmetic sum of the number of its
constituent data movements. By extension, the functional size of any piece of software with a given
measurement scope11 in any layer in the software model is the arithmetic sum of the functional sizes
of the functional processes of that piece of software.

Characteristic 3 – Size of change(s) to a piece of software

The functional size of any required functional change(s) to a piece of software is by convention the
arithmetic sum of the number of its data movements that must be added, modified and deleted as a
consequence of the required change(s).

Characteristic 4 – The minimum and maximum size of a functional process

According to these characteristics, as already established in principle (g) of the Generic Software
Model, the minimum functional size for a single functional process is 2 CFP, because the smallest

11 For rules on the aggregation of sizes of pieces of software in different measurement scopes, see the chapter of the
Measurement Manual on the measurement phase.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 24

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

functional process must have at least one Entry (as input), and either one Exit (as output) or one Write
(as an alternative useful outcome).

As a change may affect only one data movement, it follows that the minimum size of a change to a
functional process is 1 CFP.

Further, according to these characteristics, there is no upper limit to the functional size of any one
functional process and hence no upper limit to the functional size of any piece of software.

Additional principles and detailed rules and processes of the Measurement Phase for determining the
functional size from the FUR of a piece of software expressed in the Generic Software Model are
presented in the related chapters of the Measurement Manual and are summarized in its appendices
B and C.

The COSMIC Functional Size Measurement Method v3.0, Method Overview - Copyright © 2007. 25

All rights reserved. The Common Software Measurement International Consortium (COSMIC)

AAppppeennddiixx AA

APPENDIX A - COSMIC CHANGE REQUEST AND COMMENT PROCEDURE

The COSMIC Measurement Practices Committee (MPC) is very eager to receive feedback, comments
and, if needed, Change Requests for the COSMIC Measurement Manual. This Appendix sets out how
to communicate with the COSMIC MPC.

All communications to the COSMIC MPC should be sent by e-mail to the following address:

 mpc-chair@cosmicon.com

Informal General Feedback and Comments

Informal comments and/or feedback concerning the Measurement Manual, such as any difficulties of
understanding or applying the COSMIC method, suggestions for general improvement, etc should be
sent by e-mail to the above address. Messages will be logged and will generally be acknowledged
within two weeks of receipt. The MPC cannot guarantee to action such general comments.

Formal Change Requests

Where the reader of the Measurement Manual believes there is an error in the text, a need for
clarification, or that some text needs enhancing, a formal Change Request (‘CR’) may be submitted.
Formal CR’s will be logged and acknowledged within two weeks of receipt. Each CR will then be
allocated a serial number and it will be circulated to members of the COSMIC MPC, a world wide
group of experts in the COSMIC method. Their normal review cycle takes a minimum of one month
and may take longer if the CR proves difficult to resolve. The outcome of the review may be that the
CR will be accepted, or rejected, or ‘held pending further discussion’ (in the latter case, for example if
there is a dependency on another CR), and the outcome will be communicated back to the Submitter
as soon as practicable.

A formal CR will be accepted only if it is documented with all the following information.

• Name, position and organisation of the person submitting the CR
• Contact details for the person submitting the CR
• Date of submission
• General statement of the purpose of the CR (e.g. ‘need to improve text…’)
• Actual text that needs changing, replacing or deleting (or clear reference thereto)
• Proposed additional or replacement text
• Full explanation of why the change is necessary

A form for submitting a CR is available from the www.cosmicon.com site.

The decision of the COSMIC MPC on the outcome of a CR review and, if accepted, on which version
of the Measurement Manual the CR will be applied to, is final.

Questions on the application of the COSMIC method

The COSMIC MPC regrets that it is unable to answer questions related to the use or application of the
COSMIC method. Commercial organisations exist that can provide training and consultancy or tool
support for the method. Please consult the www.cosmicon.com web-site for further details.

