
An overview of COSMIC-FFP field trial results

Abran A., Symons C., Oligny S.,

November 2000

Abstract

The Common Software Measurement International Consortium (COSMIC) was formed in
1998 to design and bring to market a new generation of software measurement methods. The
COSMIC group reviewed existing functional size measurement methods, studied their
commonalities, and proposed the basic principles on which a new generation of software
functional size measurement methods could be based. In November of 1999, the group
published version 2.0 of COSMIC-FFP, a measurement method implementing these principles,
and put its measurement manual on the Web for public access. Over the past year, industrial
organizations have contributed data in the context of COSMIC field trials. This report present
an overview of the field trial results, including an analysis of the relationship of effort with
respect to the software functional size, measured in COSMIC-FFP size units. The data set is
described, as well as the constraints for the interpretation of the results.

1. Context
Quantifying the size of software is generally recognized as one of the keys to adequate estimation

of effort, cost and schedule of software projects. Source lines of code was the first generally
accepted measure for this purpose and is still used extensively, as demonstrated by the many
estimation models that include this measure as a key parameter [1, 2]. As a measure of software size
though, the source code measure carries some inherent limitations, and this has been recognized by
software engineering practitioners and researchers alike [3]. Among the practitioners, Allan Albrecht
was the first to propose, over 20 years ago, a new way of quantifying software size based on the
user’s view of the software [4]. Albrecht’s 1979 method, now referred to as the IFPUG method, is
still used today and provides useful results in many organizations, but it also has some limitations and
these have been well documented over the past 15 years. One of these limitations is the difficulty of
applying such a method outside the MIS domain, as documented by [3, 5, 6, 7, 9, 10, 11, 12, 13, 14].
In 1996, the industry sponsored the development of an IFPUG extension for real-time and embedded
software, which was put into the public domain under the name of Full Function Points [8, 15, 16].

Building on the strengths of this work and with the support of the industry, the Common Software
Measurement International Consortium (COSMIC) was formed in 1998 to design and bring to market
a new generation of software measurement methods. The first functional sizing method should be
designed to work equally well for ‘data-rich’ business/MIS software and for ‘control-rich’ or ‘real-
time’ software, that is software which is to be found in telecoms, avionics, process control, embedded
and operating systems. The method should be able to size such software in any layer or peer-item of
a multi-layer and/or multi-tier architecture. It is not designed to measure functionality of software
which is ‘algorithm-rich’, that is software which is dominated by complex mathematics.

The COSMIC group reviewed existing methods (IFPUG, MarkII [17], NESMA [18] and version
1.0 of the Full Function Point methods [8]), studied their commonalties, and proposed the basic
principles on which a new generation of software functional size measurement method could be
based [19, 20, 21]. In November of 1999, the group published version 2.0 of COSMIC-FFP [23], a
measurement method implementing these principles, and put its measurement manual on the Web for
public access. Overall, close to 40 people from 8 countries participated in the design of this
measurement method. The Measurement Manual, describing the method, is available in English,
French, Japanese and Spanish. The purpose of this paper is to introduce the COSMIC-FFP functional
size measurement method and to present some results of the field trials, gathered over the past year.

2. The measurement method

2.1. COSMIC-FFP measurement systems
The COSMIC-FFP measurement method explicitly defines a measurement system which includes

a measurement principle, base functional components, a standard unit of measure and an aggregation
function.

• Measurement principle: based on the COSMIC-FFP generic software model (Figure 1), the
method, through a defined set of rules and procedures, produces a numerical figure to
represent the functional size of this model. These rules implement the principle that the
functional size of a piece of software is directly proportional to the number of its data-moving
sub-processes. By convention, this numerical figure is then extended to represent the
COSMIC-FFP functional size of the software itself.

Figure 1: COSMIC-FFP generic software model

• Base functional components: version 2.0 of the COSMIC-FFP measurement method uses
only four types of data-moving sub-processes, referred to as base functional components in
ISO/IEC 14143-1 [22]: entry, exit, read and write; each one is defined in [23].

• Standard unit of measurement: the standard unit of measurement, that is, 1 Cfsu, is defined
by convention as equivalent to one single data movement type at the sub-process level.

• Aggregation function: The functional size of the data movement base functional components
can be combined to obtain the size of any higher-level functional structures such as that of
functional processes, components within layers or whole applications. This is performed by
arithmetically adding together the functional sizes of the constituent functional structures
according to the purpose of the measurement.

The measurement system proposed by the COSMIC-FFP measurement method offers a scalable
result, which means that the functional size figure can be constructed at the desired level of
abstraction. Furthermore, as demonstrated by Fetcke in [24], the COSMIC-FFP measurement
system meets the dominance and the monotonicity properties; two distinctive and desirable
measurement properties, violated by some other functional size measurement methods, and
contributing theoretically to a) better predictability of effort estimates (in the case of dominance) [24,
pp.150] and b) better predictability of functional size itself (in the case of monotonicity) [24, pp. 152].

functional
users

requirements

functional
process

data
movement

types

functional
users

requirements

functional
process

functional
process

data
movement

types

data
movement

types

2.2. COSMIC-FFP field trials
The field trials of the COSMIC-FFP method were organized:

• to test that the COSMIC FFP V.2 documentation is understandable and interpretable in a
common and repeatable way across software developers working in different domains, with
different methods of expressing requirements and with different development technologies,
and can be applied with acceptable effort;

• to test that the functional size measures obtained properly reflect the functionality of the
related software requirements as perceived by experts in the requirements and/or that the
functional size measures correlate with development effort;

• to enable a full transfer of the COSMIC FFP method to the organisations participating in the
field trials, such that they regard it as ‘implemented’;

• to establish initial benchmark performance levels according to the COSMIC FFP method,
against which the participating organisations can compare their own performance.

A protocol was documented to collect specific and standardized data from each participating
industrial partner. This protocol included the subset of compulsory data attributes specified in the data
collection protocol of the International Software Benchmarking Standards Group (ISBSG) [25].

Specific reports have been prepared for each of the participating field trials organizations
addressing how each of the above field trials aims has been met for their own organization; in
addition, specific benchmarking of organizational performance against the full trial data set was
delivered to each participant. This report presents an overview of the field trial results, including an
analysis of the relationship of effort with respect to the software functional size, measured in
COSMIC-FFP size units (Cfsu). The data set is described, as well as the constraints for the
interpretation of the results. Further specific reports discussing each of the other field trials aims will
be prepared and published over the next few months.

3. General acceptance of the method in the field trials

During the field trials, the COSMIC FFP method was applied to software in different layers and
peer items of multi-layer, multi-tier architectures from the application areas of telecommunications
(switches and mobile devices), avionics and other defence control software, process control, and
banking software. The projects were either new developments, or enhancements to existing
systems. As with any measurement process carried out in any field of sciences and engineering, each
organisation has to specify its measurement procedure for the application of a measurement method
in their specific context. This is necessary to implement the generic functional size measurement
rules in the context of the specific organisational means of documenting requirements or functional
specifications such as UML Use Cases or SADT diagrams. In all cases, measurement procedures
were developed to implement the general COSMIC FFP principle and rules and which satisfied the
local need for unambiguous and repeatable interpretation.

Two specific trials were conducted to test repeatability of sizing of the same specifications by
different measuring engineers. In the first trial, the documentation of some avionics software was
available to a very high standard and the five engineers who each sized two sets of specifications
were all familiar with the domain. Near-perfect repeatability was obtained.

In the second trial on specifications of process control software, engineers who were familiar with
the domain obtained results of reasonable repeatability. However, junior engineers with limited
experience of the domain showed poor repeatability.

Our conclusion is that experience of both the COSMIC FFP sizing method and of the domain are
essential to ensure repeatability of sizing. Specific measurement procedures for implementing the
method in the context of local documentation standards are also necessary.

The general consensus of those participating in the trials was that the COSMIC FFP functional
size method is ‘easy’ or ‘reasonably easy’ to apply. The measurement effort is similar to that needed
for established functional sizing methods.

Comments from individual organisations participating in the trials include the following:

• ‘Project Teams were able to grasp the elements of the method easily and were enthusiastic about
the method’

• ‘Documentation and effort needed is similar to that for applying the IFPUG method, though there
is an extra step to identify layers’

• ‘The Z-unit has now also continued COSMIC FFP measurements with new starting projects and
decided to implement this measurement technique as a standard procedure in their development
process ’

Finally, organisations that have tried the COSMIC FFP method have realised the value of
producing requirements which are measurable, (as well understandable, traceable, testable, etc.) In
two cases, errors were discovered in the documentation of software during the field trials as a result
of the rigour of applying the COSMIC FFP sizing method.

4. Relationship with project effort

Field trial data were received from a variety of sources. The data analysed here have been
selected because they belong to the same functional domain: they are all for projects developed for
the domain of highly-constrained real-time software.

4.1. Presentation of the data sample
The data used in the analysis below are the 12 software projects from the real time domain; these

projects were developed and measured by three different organizations from three countries. Training
on the COSMIC-FFP method was organized at these three organizations using the same training
material. All projects were completed either in 1999 or early 2000. The total size of the 12 software
is 13 961 Cfsu; there were therefore 13 961 elementary data movements identified at the functional
level. The data sample is presented in Table 1 below. Of the 12 projects, ten projects were for the
development of new software applications while the other two were projects implementing functional
enhancements to existing software applications. In terms of functional size, four projects delivered
under 100 Cfsu, six between 142 and 810 Cfsu and two projects were much larger, delivering 3004
and 8251 Cfsu respectively.

While these organizations measured the functional size using the same measurement standard,
that is COSMIC-FFP 2,0, it can be observed from Table 1 that these organizations had different time
recording systems, some with details for three project phases (Specify, Build, Test) while others had
information only for one or two of these project phases. Effort is reported in hours, as specified in
the data collection protocol defined by the International Software Benchmarking Standards Group
(ISBSG) [25].

Project Type Size (Cfsu) Specify effort
(person-hours)

Build effort
(person-hours)

Test effort
(person-hours)

A Development 32 n.a. 252 n.a.
B Development 76 381 1457 401
C Development 56 68 487 335
D Development 142 136 643 n.a.
E Development 8 115 116 n.a.
F Enhancement 142 2 060 1 487 5 055
G Development 332 468 11 382 254
H Enhancement 624 n.a. 15 815 1 372
I Development 810 1 304 10 903 4 548
J Development 484 n.a. 20 808 6 772
K Development 8251 49 000 66 000 93 000
L Development 3004 32 000 27 000 20 000

TOTAL 13961

Table 1 – COSMIC-FFP data sample for selected field trial results

4.2. Relationship between software functional size and effort
The analysis of the data for the sample represented some difficulties for the following reasons:
• Size of the data sample : even though 12 data points is within the usual size of samples in

publications (e.g. of the 21 empirical duration models analyzed in [8], 12 of them are derived
from samples containing 20 data points or fewer), it is still a small sample for statistical
analysis; care must thus be exercised in the interpretations of the results.

• Non-homogeneity of the development processes. Data was received from three different
organisations each with their own development processes. Even though their processes could
have some similarities within the respective organisations due to the implementation of internal
organisational standards, such a level of standardisation cannot be expected across
organisations.

• Non-homogeneity in the range of some of the key variables: for example, in this sample, the
two larger projects have a functional size of an order of magnitude greater than the other ten
projects. In this context, a simple regression model cannot be used since one of its key
requirements is not met, that is that the variables must have a gaussian distribution (e.g. a
normal distribution). A mathematical transformation is then required: in this specific instance,
a log transformation was used to normalise the data set. This allowed then for a proper use
of the regression models, while making data interpretation more difficult for practitioners not
familiar with interpretation of figures with logarithmic scales. These comments also apply to
the other key variable, the project effort (and for the same two projects with the largest
effort).

• Non-homogeneity in the standards across organisations for data collection of the effort
variable: this is directly illustrated in the data set by the different abilities of the organisation
of recording effort by project phases (Specify, Build and Test phases), and indirectly since
each organisation had their own practices in defining project phases, even though the reporting
was based in their best effort to match the ISBSG definition of project phase.

4.2.1. Effort to specify
The effort variable is available for the Specify phase for nine projects. The log-log representation

of this subset is presented in Figure 2. The coefficient of regression R2 is 0,7824 for the linear
regression model:

Specify Effort = 4,0342 x (Size)0,9903

DEV
DEV

DEV
DEV

Effort = 4,0342 Size 0,9903

R2 = 0,7824

1000

10000

100000

S
pe

ci
fy

 E
ff

or
t

(p
er

so
n-

ho
ur

)

Figure 2 – Specify phase – Regression model on Log-log plot (n = 9, R2 = 0,7824)

4.2.2. Effort to build
The effort variable is available for the Build phase of the full set of 12 projects. The regression

model for these 12 is presented in Figure 3. The coefficient of regression R2 is 0,8971 for the linear
regression model:

Build Effort = 12,313 x (Size)1,015

Figure 3 – Build phase regression model on Log-log scale (n = 12, R2 = 0,8971)

4.2.3. Effort to test
The effort variable is available for the Test phase for 9 projects. The regression model for these 9

projects is presented in Figure 4. The coefficient of regression R2 is 0,7019 for the linear regression
model:

DEV

DEV

DEV
ENH

DEV
DEV

DEV ENH

DEV
DEV

DEV

DEV

Effort = 12,313 Size 1,015

R2 = 0,8971

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000

Size (Cfsu)

B
u

il
d

 E
ff

o
rt

 (
p

er
so

n
-h

o
u

r)

Test Effort = 5,2124 x (Size)1,024

Figure 4 – Test phase regression model on Log-log scale
(n = 9, R2 = 0,7019)

5. Concluding remarks.
This paper has presented the highlights of the analysis of the relationships of project effort with

respect to the functional size variable as measured with COSMIC-FFP. Taking into account the
significant non-homogeneity of the origin of the data sample (three organisations from three different
countries with different development methodologies and platforms), we would have expected much
less consistency on the relationship across both variables. For all of the three project phases for
which data was available, the coefficients of determination between size and effort, on a log scale,
varied between 0,7019 and 0,8971 depending on the project phase. These results are of course of a
preliminary nature, and should be considered only as indicative due to the nature of the data set.

On the other hand, such results have been highly valued within the organisation which provided
the largest number of projects within this sample. Using the measurements from the projects
contributed to the COSMIC field trials, they have built their own productivity and estimation models,
using COSMIC-FFP as the standard for functional size measurement and adding other in-house
variable to take into account such productivity factors as programming platform and levels of reuse.
Of course such in-house estimation models can be expected to perform much better than models built
from non homogeneous multi-organisational data sets.

The COSMIC FFP method is the first Functional Sizing method to

• be designed by an international group of experts on a sound theoretical basis
• draw on the practical experience of all the main existing FP methods
• be designed to conform to the ISO standard on ‘Functional Size Measurement’ (ISO/IEC 14143-

1)
• be designed to work across MIS and real-time domains, for software in any layer or peer item
• be tested in field trials before being finalised

DEVDEV
DEV

DEV

ENH

DEV
DEV

DEV

DEV
Effort = 5,2124 Size

1,0246

R
2
 = 0,7019

1

10

100

1000

10000

100000

1 10 100 1000 10000

Size (Cfsu)

T
es

t
E

ff
o

rt
 (

p
er

so
n

-h
o

u
r)

6. Acknowledgements
The authors of this paper wish to acknowledge the data collection contributions of the field trials

organizations who for competitive reasons have selected to remain anonymous.

7. Bibliography
[1] B.W. Boehm, R.W. Wolverton, “Software cost modelling: some lessons learned”, Journal of System and

Software, 1:195-201, 1980.

[2] V. Côté, P. Bourque, S. Oligny, N. Rivard, “Software metrics: an overview of recent results”, Journal of
System and Software, 8:121-131, 1988.

[3] C. Jones, Applied software measurement - Assuring productivity and quality, 2nd Edition. New York, NY:
McGraw-Hill Inc., 1996.

[4] A.J. Albrecht, “Measuring Application Development Productivity,” presented at IBM Applications
Development Symposium, Monterey, CA, 1979.

[5] S.A. Whitmire, “3D Function Points: Scientific and Real-Time Extensions to Function Points,” presented
at Pacific Northwest Software Quality Conference, 1992.

[6] D.J. Reifer, “Asset-R: A Function Point Sizing Tool for Scientific and Real-Time Systems,” Journal of
Systems Software, Vol. 11, p. 159-171, 1990.

[7] T. Mukhopadhyay and S. Kekre, “Software effort models for early estimation of process control
applications,” IEEE Transactions on Software Engineering, Vol. 18, p. 915-24, 1992.

[8] A. Abran, J.M. Desharnais , M. Maya, D. St-Pierre, P. Bourque, “Design of a functional size measurement
for real-time software”, Research report no. 13, Software Engineering Management Research Laboratory,
Université du Québec à Montréal, Montreal, Canada, November 1998.

[9] S.D. Conte, H. E. Dunsmore, V. Y. Shen, Software engineering metrics and models. Menlo Park: The
Benjamin/Cummings Publishing Company, Inc., 1986.

[10] R.B. Grady, Practical software metrics for project management and process improvement. Englewood
Cliffs, New Jersey: Prentice-Hall Inc., 1992.

[11] B. Hetzel, Making Software Measurement Work - Building an Effective Measurement Program. Boston:
QED Software Evaluation Series, 1993.

[12] S.H. Kan, Metrics and models in software quality engineering. Readings, Massachusetts: Addison-
Wesley Publishing Company, 1995.

[13] D.C. Ince, “History and industrial application”, in N.E. Fenton, Software metrics: a rigorous approach,
Chapman & Hall, UK, 337 pages, 1991.

[14] S. Galea, “The Boeing Company: 3D function point extensions, v. 2.0, release 1.0”, Boeing Information
and Support Services, Research and Technology Software Engineering, June 1995.

[15] A. Abran, M. Maya, J.M. Desharnais , D. St-Pierre, “Adapting Function Points to real-time software”,
American Programmer, Vol. 10, no. 11, p. 32-43, November 1997.

 [16] D. St-Pierre, M. Maya, A. Abran, J.M. Desharnais , P. Bourque, “Full Function Points: Function Points
Extension for Real-Time Software - Counting Practices Manual”, Technical Report no. 1997-04, Software
Engineering Management Research Laboratory, Université du Québec à Montréal, Montreal, Canada,
September 1997. Downloadable at http://www.lrgl.uqam.ca/ffp.html.

[17] C.R. Symons, Software sizing and estimating – MkII FPA (function point analysis) , John Wiley &
sons, Chichester, UK, 1991.

[18] The Netherlands Software Metrics Users Association (NESMA), “Definitions and counting guidelines
for the application of function point analysis, version 2.0”, 1997.

[19] C.R. Symons, P. G. Rule, “One size fits all – COSMIC aims, design principles and progress”, Proceedings
of ESCOM ’99, p. 197-207, April 1999.

[20] A. Abran, “FFP Release 2.0: An Implementation of COSMIC Functional Size Measurement Concepts”,
Proceedings of FESMA ‘99, Amsterdam, Oct. 1999.

[21] C.R. Symons, “ COSMIC aims, design principles and progress”, Proceedings of IWSM ’99, pp. 161-172,
September 1999. Proceedings are downloadable at http://www.lrgl.uqam.ca/iwsm99/index2.html.

 [22] International Organization for Standardization (ISO), “ISO/IEC 14143-1:1997 – Information technology –
Software measurement – Functional size measurement – Definition of concepts”, October 1997.

[23] A. Abran, J.-M. Desharnais , S. Oligny, D. St-Pierre, C. Symons, “COSMIC-FFP Measurement Manual,
version 2.0”, Ed. S. Oligny, Software Engineering Management Research Laboratory, Université du
Québec à Montréal, Montreal, Canada, Oct. 1999. Downloadable at http://www.lrgl.uqam.ca/ffp.html

 [24] T. Fetcke, “A Generalized Structure for Function Point Analysis”, Proc. of the International Workshop
on Software Measurement (IWSM ‘99), Lac Supérieur, Canada, Sept. 1999, Downloadable at
http://www.lrgl.uqam.ca/ffp.html.

[25] International Software Benchmarking Standards Group (ISBSG), ISBSG. Worldwide Software Development
- The Benchmark . Victoria, Australia International Software Benchmarking Standards Group, 1997.
http://www.bs.monash.edu.au/asmavic/isbsg.htm.

[26] B.A.Kitchenham. Empirical studies of assumptions that underlie software cost-estimation models.
Information and Software Technology 34(4):211-218 1992.

